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1.- Introduction and Motivation  
 
Network operation, management and optimization are built based on network models. A network 
model is a digital representation of the physical and logical networking infrastructure that it is 
able to understand the complex relationship between the different network characteristics. This 
is also known as digital twin. As examples of digital twins: a twin can estimate what will be the per-link 
utilization for a particular input traffic in a data center, predict the QoE for a set of flows in an access 
network or estimate the resulting network state if a link fails in an ISP network. 
 
Typically, such network models operate in conjunction with management and/or optimization 
algorithms. In such scenarios the network administrator configures the network policy (goals) in the 
algorithms that uses the network model to obtain the configuration that meets the goals.  Then the 
optimization algorithm is tasked to explore the configuration that meets the goals of the network 
administrator. An example of this is Traffic Engineering, where the goal is finding a routing configuration 
that keeps the per-link utilization below the per-link capacity. Since the dimensionality of the 
configuration is typically very large, efficient optimization strategies reduce them by using expert 
knowledge. The networking community has developed over decades a large set of network models and 
optimization strategies [1]. 
 
One of the fundamental characteristics of network operation, management and optimization is that we 
can only operate what we can model. For example, in order to optimize the jitter of the packets 
traversing the network we need a model able to understand how jitter relates to other network 
characteristics. In the field of fixed networks many accurate network models have been developed in 
the past, particularly using Queuing Theory [2][3]. However, such models make some simplifications like 
assuming some non-realistic properties of real-world networks (e.g., generation of traffic with Poisson 
distribution, probabilistic routing)[4]. As a result, they are not accurate for large networks with realistic 
network configurations.  
 
Recent advances in Artificial Intelligence (AI) [5] have led to a new era 
of Machine Learning (ML) techniques such as Deep Learning [6]. This 
has attracted the interest of the networking community to try to take 
advantage of these novel techniques to develop a new breed of 
models, particularly focused on complex network scenarios and/or 
metrics [7]. 
 
In this context relevant research efforts are being devoted into this new 
field. Researchers are using neural networks to model computer 
networks [8], to then employ such models for network optimization 
[9][10], in some cases in combination with advanced strategies based 
on Deep Reinforcement Learning (DRL) [4][11][12]. 
 

“ML applied to Networking 
has not outperformed yet 

traditional mechanisms 
because state-of-the-art 

proposals use neural 
networks that cannot learn 

and model networks. 
Computer networks are 

fundamentally represented 
as graphs (topology, routing, 

etc.)” 
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What is a
Network Digital Twin?
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Almasan P, Ferriol-Galmés M, Paillisse J, Suárez-Varela J, Perino D, López D, Perales AA, Harvey P, Ciavaglia L, Wong L, Ram V. Digital Twin Network: Opportunities and 
Challenges. arXiv preprint arXiv:2201.01144. 2022 Jan 4. 3



How to build a 
Network Digital Twin?
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What are the inputs and outputs?

Network 
Digital 
Twin

?

? ?

Before discussing how to build the Digital Twin, 
we need to clearly define the inputs and outputs
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Network Digital Twin that focuses on peformance
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Network as a black-box
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Network Digital Twin
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Use-Cases for 
Network Digital Twin

9



Use-cases of the Performance Network Digital Twin (II)

• Requirments for the Performance Digital Twin
• Fast and Accurate

• What-if
• What will be the impact on the network load if we acquire Company X?
• What is the optimal network upgrade to support a new set of users?

• Optimization
• How can I support new user SLAs with the same resources?
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More use-cases at: Almasan P, Ferriol-Galmés M, Paillisse J, Suárez-Varela J, Perino D, López D, Perales AA, Harvey P, 
Ciavaglia L, Wong L, Ram V. Digital Twin Network: Opportunities and Challenges. arXiv preprint arXiv:2201.01144. 2022 
Jan 4. https://arxiv.org/abs/2201.01144



How to build a Network 
Digital Twin?
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Network Digital Twin
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Building a Network Digital Twin using: 
Simulation
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Building a Digital Twin with a Simulator
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Network Digital Twin is
built using a network simulator



Building a Digital Twin with a Simulator

• We have built a Digital Twin using the OMNET++ simulator
• This is a discrete-event simulator
• It simulates the propagation, transmission and forwarding of each

and every packet
• Other well-known discrete-event simulator are NS2/3, GN3, Cisco 

packet tracer
• Is it fast and accurate?
• Accuracy = Delay measured at the real network vs delay measured

at the simulator
• Accuracy is expressed as Error in %  
• What about the simulation time?

15



Building a Digital Twin with a Simulator

16

• We compare the delay obtained with the 
simulator to that of a real network

• Accuracy is very low
• With enough coding effort, you can get the error 

close to 0
• But…



Building a Digital Twin with a Simulator

Simulation time (Y) vs. Number of packets (X)
• Simulation time scales linearly

with the number of packets
(discrete-events)

• 1 billion packets takes 11h
(Xeon E, 64GB RAM) of CPU 
time

• Roughly equivalent to 1min of 
a single 10Gbps link

It is impractical to build a Network Digital Twin using a Discrete-Event Simulator
because of its high computational cost
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Building a Network Digital Twin using: 
Emulation
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Building a Network Digital Twin using Emulation
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Building a Network Digital Twin using Emulation

• Poor accuracy of network emulation
• Because emulation does not use specific hardware built for networking
• If your network infrastructure is already fully virtualized, then emulating it

requires as many resources as running the real one
• Otherwise peformance will be lower

• Emulation has many relevant use-cases
• Training
• Debugging (why my SYN packets are being dropped)
• Testing new features (what happens if I actívate this feature?)

Lochin, Emmanuel, Tanguy Perennou, and Laurent Dairaine. "When should I use network emulation?." annals of telecommunications-
annales des télécommunications 67, no. 5 (2012): 247-255. 20

It is impractical to build a Network Digital Twin using emulation
because of it offers very low speed



Building a Network Digital Twin using: 
Queuing Theory
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Building a Network Digital Twin using Queuing Theory

• Queing Theory represents our best available analytical tool for
computer networks modelling.

• It models the network as a series of queues serviced by routers

Sundarapandian, V. (2009). "7. Queueing Theory". Probability, Statistics and Queueing Theory. PHI Learning. ISBN 978-8120338449.

Leonard Kleinrock 
pioneered the

application of QT to 
packet-switched network 

in the 70s.

22
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Building a Network Digital Twin using Queuing Theory
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Ferriol-Galmés, M., Rusek, K., Suárez-Varela, J., Xiao, S., Cheng, X., Barlet-Ros, P., & Cabellos-Aparicio, A. (2022). RouteNet-Erlang: A Graph Neural 
Network for Network Performance Evaluation. In Proc. Of IEEE INFOCOM 2022  https://arxiv.org/abs/2202.13956 23

Network Digital Twin is
built using a equations



Building a Network Digital Twin using Queuing Theory

• The QT Digital Twin is fast (milliseconds)
• QT Digital Twin scales linearly with the

number of queues.
• It can support real-world networks

• The main limitation with QT is that it has 
poor accuracy under realistic traffic
models
• This is a well-known limitation
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Figure 3: Delay prediction of a queing theorymodel for di�er-
ent types of tra�c, compared with results from the simulator
in sec. ??.

scenarios ranging from �ow table size estimation [26] to cloud
computing [28].

Nevertheless, the key limitation of QT are the strong assumptions
on the packet arrival process, which typically do not hold in real
networks CITE ERR? [31]. Internet tra�c has been extensively
analyzed in the past two decades [1, 8, 9, 11, 21], and despite the
community has not agreed on a universal model, there is consensus
that in general aggregated tra�c shows strong autocorrelation and
a heavy-tail [22].

As an example, �gures 3a 3b shows the error when calculating
the network delay using the QT model described in appendix ??
for di�erent tra�c models. The error is computed with respect to
the results of the simulator from sec. ??. We can see that the QT
model performs quite well for Poisson and Constant bitrate tra�c,
while for the rest of the tra�c models (On-O�, autocorrelated expo-
nentials and modulated exponentials) the Mean Absolute Relative
Error (MARE) is more than 20%.

@Miquel scenario: type of network, tra�c matrix, topology...?
M++: Queda una mica extrany que ataquem a QT i no usem els
mateixos samples que a RNN i MLP. Hauriem de predir els mateixos
samples? (Els resultats seran similars, a QT li és igual)

Since QT struggles to adapt to all the possible tra�c models, we
conclude that it has limited applicability to a DT despite its speed.
@Albert: too strong assumption, and they’ll say: a model for each
traf�c model

4 MACHINE LEARNING
TODO: needs a section explainin why generalization and scalability
are important, say "generalization" and say it’s two parts (i) under-
stand different topologies, and (ii) understand larger topologies, say
it’s a challenge we haven’t faced in previous systems because they
naturally have these properties

Next, we investigate classical Machine Learning (ML) tools that
can be used to build a Digital Twin. Machine Learning has been
applied in a wide variety of domains, including networking. For
example, it is widely used in tra�c classi�cation [17] and resource
allocation [27]. In this section, we build a DT with two widely used
ML models: a Multi Layer Perceptron (MLP CITE), and a Recurrent
Neural Network (RNN CITE).

Machine Learning models are especially interesting in our sce-
nario because they o�er the best of simulation and queuing theory:
they can be trained to understand virtually any network feature
that we can represent with a dataset, and their speed is in the same
order of magnitude than analytical QT models. Regarding the for-
mer, there are some caveats with respect to training that we discuss
in sec. ??.

4.1 Multi Layer Perceptron
4.1.1 Design. M++: Several works have proposed MLP [14, 24,

29] as a viable way to build a Digital Twin for computer networks.
Inspired by the aforementioned works we build a MLP that will be
responsible of predicting themean-delay for each source destination
pair. For this, we explore several Hyperparameters that have been
tunned:

• Number of hidden units: Same as the number of inputs
(� ). In this particular case, � = (<0G#4CF>A:(8I4 � 1) ⇤
<0G#4CF>A:(8I4) ⇤ =D<�40CDA4B), since the biggest net-
work is GEANT(24 nodes)<0G#4CF>A:(8I4 = 24, the max-
imum number of links and paths is 575 adn the number of
features (link capacity, packets, bandwidth, tra�c models...)
which makes a total input size of 575 ⇤ 15 = 8625D=8CB .

• Number of layers: One input layer., two hidden layers with
ReLU activation and one output layer with Linear Activation.

• Optimizer: Adam
• Loss function: Mean Absolute Percentage Error (MAPE).

@Miquel 1 paragraph explaining how it’s build usually
@Miquel 1 paragraph howwemodel a network with MLP. Detail

that we want to make it understand di�erent tra�c models, since
it’s one of the limiation of QT.

4.1.2 Evaluation. @Miquel details training and testing (which
dataset, trainig parame, hyperparameter, etc , which dataset do we
use? Same as sim section? Dataset Tra�c Model is FIFO Dataset
routing: Poisson + FIFO

We focused the evaluation of the MLP in its ability to adapt to
di�erent tra�c models and changes in routing con�gurations. First,
table 2 presents the error when predicting the network delay with
respect to our simulator, and for di�erent tra�c models. We can
see that the MLP o�ers an accuracy similar to our QT model: the
error is around 10% for Poisson tra�c, but increases signi�cantly
for the rest of tra�c models, between 23% and 84%. @Miquel: why

ACM SIGCOMM Computer Communication Review Volume 48 Issue 1, January 2018

Error (lower is better) when predicting the
performance of flows with different traffic
models. 

Modulated is roughly equivalent to TCP traffic

It is impractical to build a Network Digital 
Twin using QT because it is not accurate
with realistic traffic

24

68.1% Error



Building a Network Digital Twin using: 
Graph Neural Networks
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What are 
Graph Neural Networks?

26



Overview of the most common NN architectures

Type of NN Information 
Structure

Fully 
Connected NN Arbitrary

Convolutional 
NN Spatial

Recurrent NN Sequential

Graph NN Relational
27

Classification, 
Unsupervised 
Learning

Images and video

Text and voice

Graphs 
(molecules, maps, 
networks)

Battaglia, Peter W., et al. "Relational inductive biases, deep learning, and graph networks." arXiv preprint arXiv:1806.01261(2018).



GNN are a hot topic in AI
• Top trends in Graph Machine Learning in 

2020 “New cool applications of GNN” [1]
• “Machine Learning on graphs becomes a 

first-class citizen at AI conferences” [2] 
(NeurIPS 2019)

• Graph Neural Networking Challenge 
organized by ITU-T received more than 
120 participants from over 27 countries [3]

• GNN helped solved long-standing 
problems: AlphaFold [4]

[1] https://towardsdatascience.com/top-trends-of-graph-machine-learning-in-2020-1194175351a3
[2] https://medium.com/mlreview/machine-learning-on-graphs-neurips-2019-875eecd41069
[3] https://www.itu.int/en/ITU-T/AI/challenge/2020/Pages/default.aspx
[4] https://alphafold.ebi.ac.uk

Source PubMed
Keyword: Graph Neural Network

https://towardsdatascience.com/top-trends-of-graph-machine-learning-in-2020-1194175351a3
https://medium.com/mlreview/machine-learning-on-graphs-neurips-2019-875eecd41069
https://www.itu.int/en/ITU-T/AI/challenge/2020/Pages/default.aspx
https://alphafold.ebi.ac.uk/


RouteNet: A Network Digital Twin that 
uses Graph Neural Networks
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Building a Network Digital Twin using Neural Nets
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Building a Network Digital Twin using Neural Nets
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Building a Network Digital Twin using GNNs
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RouteNet: A custom built Graph Neural Network 
architecture tailored for computer networks

Ferriol-Galmés, M., Rusek, K., Suárez-Varela, J., Xiao, S., Cheng, X., Barlet-Ros, P., & Cabellos-Aparicio, A. (2022). RouteNet-Erlang: A Graph Neural 
Network for Network Performance Evaluation. In Proc. Of IEEE INFOCOM 2022  https://arxiv.org/abs/2202.13956

Network Digital Twin
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RouteNet’s Architecture (simplified)

Unveiling the potential of GNN for network modeling and optimization in SDN , ,

Figure 1: Architecture for network optimization

achieved by means of “conventional” SDN-based measure-
ment techniques (e.g., OpenFlow [19], OpenSketch [30]) or
more novel telemetry proposals such as INT for P4 [15] or
iOAM [1]. Likewise, in the knowledge plane there is an op-
timizer whose behavior is de�ned by a given target policy.
This policy, in line with intent-based networking, may be
de�ned by a declarative language such as NEMO [2] and
�nally is translated to a (multi-objective) network optimiza-
tion problem. In this point, an accurate network model can
play a crucial role in the optimization process. This way, the
optimizer can bene�t from this model to run optimization
algorithms (e.g., hill-climbing) that iteratively explore the
performance of candidate solutions in order to �nd the opti-
mal con�guration. We intentionally leave out of the scope
of this architecture the training phase.

To be successful in scenarios like the one proposed above,
the network model should meet two main requirements: (i)
Provide accurate results, and (ii) have a low computational
cost to allow network optimizers to operate in short time
scales. Moreover, it is essential for optimizers to have enough
�exibility to simulate what-if scenarios involving di�erent
routing schemes, changes in the topology and variations
in the tra�c matrix. To this end, we rely on the capability
of Graph Neural Network (GNN) models to operate on en-
vironments represented as graphs. Our GNN-based model,
RouteNet (Fig. 2), inspired by the Message-Passing Neural
Network [12] used in the chemistry �eld, is able to propa-
gate any routing scheme (i.e., relationships between links
and end-to-end paths) throughout network topologies. Like-
wise, it uses information from the tra�c matrix (de�ned as
the bandwidth between each pair of nodes in the network)
to abstract relevant information of the current network state.
In Sec. 5, we provide some relevant use-cases with experi-
ments that exhibit how can bene�t from this GNN model for
di�erent network-related problems.

Figure 2: Scheme of RoutNet - our GNN-based model.

3 NETWORK MODELINGWITH GNN
In this section, we provide a detailed mathematical descrip-
tion of RouteNet, the GNN-based model proposed in this
paper and designed speci�cally to operate in networking
scenarios.

3.1 Notation
A computer network can be represented by a set of links
N = {li }, i 2 (0, 1, . . . ,nl ), and the routing scheme in the
network by a set paths R = {pk } k 2 (0, 1, . . . ,np ). Each
path is a sequence of links pk = (lk (0), . . . , lk ( |pk |)), where
k(i) is the index of the i-th link in the path k . The properties
(features) of both links and paths are denoted by xli and xpi
The matrixA represents point to point tra�c in the network,
while the corresponding delay is represented by a matrix D.

3.2 Message Passing on Paths
Let us consider the delay on a path pk = (lk(0), lk (1), lk (2) . . .).
It is a sum

Õ
i d(lk (i))where the function d(lj ) gives the delay

on j-th physical link. The state of the physical link (and the
delay indirectly) on the other hand depends on all the tra�c
passing through that link. If packet loss is negligible the
order of links in the path doesn’t matter. On the other hand,
the lossy link introduces sequential dependence between
link states.

Let the state of a link be described by hli i.e. an unknown
hidden vector. In the similar way the state (information
about) of the path is described by hpi . We expect the link state
vector to contain the information like the link delay, packet
loss rate, link utilization etc. The path state is expected to
contain the information about the end to end connection
parameters like the delay or the total loss. From the previous
paragraph we can state the following principles

1) State of a path depends on the states of all the links in
the path.

2) State of a link depends on the states of all the paths
containing that link.

Those principles can be formulated in a mathematical way
as

hli = f (hp1 , . . . , hpj ), li 2 pk ,k = 1, . . . , j (1)
hpk = �(hlk (0) , . . . , hlk (|pk |) ) (2)

where f and � are some functions.
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It is known that neural networks are universal function
approximators. However, a direct approximation of those
functions is not possible since: 1) Equations (1) and (2) de�ne
an implicit function (a nonlinear system of equationswith the
states being the hidden variables) 2) The functions depend
on the routing; 3) The dimensionality of each function is very
high so a large amount of training samples would be required;
Our goal is to provide the routing invariant (yet routing
aware) structure for f and�. For this purpose, we propose the
RouteNet - a neural architecture based on message-passing
neural networks (MPNN) [12] used in quantum chemistry
and being a case of a Graph Neural Network.

The inference (forward pass) of the network is presented
in Algorithm 1. The network takes the path and link features
xp , xl and the routing description R as an input and outputs
the predicted path variable (delay or jitter). Note that we
simpli�ed the notation by dropping sub-index and indexing
states and features by the paths and links itself.

Input: xp , xl ,R
Output: hTp , hTl , ŷp

1 foreach p 2 R do
2 h0p  [xp , 0 . . . , 0]
3 end
4 foreach l 2 N do
5 h0l  [xl , 0 . . . , 0]
6 end
7 for t = 1 to T do
8 foreach p 2 R do
9 foreach l 2 p do

10 htp  RNNt (htp , htl )
11 m̃t+1

p,l  htp
12 end
13 ht+1p  htp
14 end
15 foreach l 2 N do
16 mt+1

l  Õ
p :l 2p m̃t+1

p,l

17 ht+1l  Ut

⇣
htl ,m

t+1
l

⌘
18 end
19 end
20 ŷp  Fp (hp )
Algorithm 1: RouteNet – a GNN architecture for routing

RouteNet architecture solves all the problems with the
equations (1) and (2). The problem with implicit functions
(circular dependencies) is common in GNN and it is solved by
a direct or approximate �xed point solution of (1) and (2). In
the RouteNet, the loop in line 7 repeats the same operations
on state vectors T times. These steps represent convergence

to the �xed point of a function from the initial states de�ned
by the loops from lines 3 and 6. This solves the �rst problem.

The second problem (routing invariance) is also common
in GNN. In this context it is known as topology invariance.
Graphs of di�erent topologies have to be represented by a
topology invariant structure. In the same way we want to
represent di�erent routings in an uniform way. The state-of-
the-art solution of this problem is the neural message passing
architecture that combines both: topology representation and
explicit state vectors representation. The RouteNet architec-
ture can be seen as an extension of vanilla message passing
neural network taking into account the two principles about
state dependence in the network.

In the Algorithm 1 the loop from from line 9 and the line 16
are the message-passing operations that allows the links and
paths to exchange the information extracted by a neural
network RNN . The lines 11 and 17 are the update operation
that encode the information in the hidden state. The path
update is a simple assignment, while the link update is a
trainable neural network. In general path update also could
be trainable neural network.

This architecture is highly �exible when it comes to rout-
ing representation. In the model, routing works just like in a
real network. It decides where to send the message. Accord-
ing to the �rst principle, each path receives messages from
all of the links in it (the loop in line 9). Similarly each link
receives messages from all the paths containing it (the sum
in line 16).

Since order of paths does not matter, we used simple sum-
mation for path message aggregation. On the other hand se-
quential dependence between links in the same path caused
by the losses requires more sophisticated message aggrega-
tion. For this we use a Recurrent Neural Network (RNN).

For an input sequence i1, i2, . . . and the initial hidden state
s0 the RNN output is a sequence de�ned as

(ot , st ) = RNN (st�1, it ).
In our model we assume a simpler version of an RNN, where
ot = st . RNNs are able to capture dependence in the sequence
and are commonly used for text processing. In the RouteNet
a RNN is used to produce the message from the link to the
containing path. This allows us to model the sequential de-
pendence between links and propagate information about
losses through the path. If packet loss is small or none the
order of links in the path does not matter and the RNN can
be replaced by a simple summation.

Additional bene�t of using RNN (or simple summation for
that matter) for the message function is that we get for free
the solution of the third problem with (1) and (2). All build-
ing blocks of RouteNet take as an input either a hidden state
or a message. Dimensionality of both are the hyper parame-
ters of the model, thus dimensionality of the problem was

• RouteNet models the relationship between links and paths
• State of a links depends on the paths that traverse that link
• State of a paths depends on the links of that path

• This is a circular dependency 33



RouteNet’s Architecture (simplified)

Unveiling the potential of GNN for network modeling and optimization in SDN , ,

Figure 1: Architecture for network optimization

achieved by means of “conventional” SDN-based measure-
ment techniques (e.g., OpenFlow [19], OpenSketch [30]) or
more novel telemetry proposals such as INT for P4 [15] or
iOAM [1]. Likewise, in the knowledge plane there is an op-
timizer whose behavior is de�ned by a given target policy.
This policy, in line with intent-based networking, may be
de�ned by a declarative language such as NEMO [2] and
�nally is translated to a (multi-objective) network optimiza-
tion problem. In this point, an accurate network model can
play a crucial role in the optimization process. This way, the
optimizer can bene�t from this model to run optimization
algorithms (e.g., hill-climbing) that iteratively explore the
performance of candidate solutions in order to �nd the opti-
mal con�guration. We intentionally leave out of the scope
of this architecture the training phase.

To be successful in scenarios like the one proposed above,
the network model should meet two main requirements: (i)
Provide accurate results, and (ii) have a low computational
cost to allow network optimizers to operate in short time
scales. Moreover, it is essential for optimizers to have enough
�exibility to simulate what-if scenarios involving di�erent
routing schemes, changes in the topology and variations
in the tra�c matrix. To this end, we rely on the capability
of Graph Neural Network (GNN) models to operate on en-
vironments represented as graphs. Our GNN-based model,
RouteNet (Fig. 2), inspired by the Message-Passing Neural
Network [12] used in the chemistry �eld, is able to propa-
gate any routing scheme (i.e., relationships between links
and end-to-end paths) throughout network topologies. Like-
wise, it uses information from the tra�c matrix (de�ned as
the bandwidth between each pair of nodes in the network)
to abstract relevant information of the current network state.
In Sec. 5, we provide some relevant use-cases with experi-
ments that exhibit how can bene�t from this GNN model for
di�erent network-related problems.

Figure 2: Scheme of RoutNet - our GNN-based model.

3 NETWORK MODELINGWITH GNN
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tion of RouteNet, the GNN-based model proposed in this
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N = {li }, i 2 (0, 1, . . . ,nl ), and the routing scheme in the
network by a set paths R = {pk } k 2 (0, 1, . . . ,np ). Each
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3.2 Message Passing on Paths
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Õ
i d(lk (i))where the function d(lj ) gives the delay

on j-th physical link. The state of the physical link (and the
delay indirectly) on the other hand depends on all the tra�c
passing through that link. If packet loss is negligible the
order of links in the path doesn’t matter. On the other hand,
the lossy link introduces sequential dependence between
link states.

Let the state of a link be described by hli i.e. an unknown
hidden vector. In the similar way the state (information
about) of the path is described by hpi . We expect the link state
vector to contain the information like the link delay, packet
loss rate, link utilization etc. The path state is expected to
contain the information about the end to end connection
parameters like the delay or the total loss. From the previous
paragraph we can state the following principles

1) State of a path depends on the states of all the links in
the path.

2) State of a link depends on the states of all the paths
containing that link.

Those principles can be formulated in a mathematical way
as

hli = f (hp1 , . . . , hpj ), li 2 pk ,k = 1, . . . , j (1)
hpk = �(hlk (0) , . . . , hlk (|pk |) ) (2)

where f and � are some functions.
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It is known that neural networks are universal function
approximators. However, a direct approximation of those
functions is not possible since: 1) Equations (1) and (2) de�ne
an implicit function (a nonlinear system of equationswith the
states being the hidden variables) 2) The functions depend
on the routing; 3) The dimensionality of each function is very
high so a large amount of training samples would be required;
Our goal is to provide the routing invariant (yet routing
aware) structure for f and�. For this purpose, we propose the
RouteNet - a neural architecture based on message-passing
neural networks (MPNN) [12] used in quantum chemistry
and being a case of a Graph Neural Network.

The inference (forward pass) of the network is presented
in Algorithm 1. The network takes the path and link features
xp , xl and the routing description R as an input and outputs
the predicted path variable (delay or jitter). Note that we
simpli�ed the notation by dropping sub-index and indexing
states and features by the paths and links itself.
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Algorithm 1: RouteNet – a GNN architecture for routing

RouteNet architecture solves all the problems with the
equations (1) and (2). The problem with implicit functions
(circular dependencies) is common in GNN and it is solved by
a direct or approximate �xed point solution of (1) and (2). In
the RouteNet, the loop in line 7 repeats the same operations
on state vectors T times. These steps represent convergence

to the �xed point of a function from the initial states de�ned
by the loops from lines 3 and 6. This solves the �rst problem.

The second problem (routing invariance) is also common
in GNN. In this context it is known as topology invariance.
Graphs of di�erent topologies have to be represented by a
topology invariant structure. In the same way we want to
represent di�erent routings in an uniform way. The state-of-
the-art solution of this problem is the neural message passing
architecture that combines both: topology representation and
explicit state vectors representation. The RouteNet architec-
ture can be seen as an extension of vanilla message passing
neural network taking into account the two principles about
state dependence in the network.

In the Algorithm 1 the loop from from line 9 and the line 16
are the message-passing operations that allows the links and
paths to exchange the information extracted by a neural
network RNN . The lines 11 and 17 are the update operation
that encode the information in the hidden state. The path
update is a simple assignment, while the link update is a
trainable neural network. In general path update also could
be trainable neural network.

This architecture is highly �exible when it comes to rout-
ing representation. In the model, routing works just like in a
real network. It decides where to send the message. Accord-
ing to the �rst principle, each path receives messages from
all of the links in it (the loop in line 9). Similarly each link
receives messages from all the paths containing it (the sum
in line 16).

Since order of paths does not matter, we used simple sum-
mation for path message aggregation. On the other hand se-
quential dependence between links in the same path caused
by the losses requires more sophisticated message aggrega-
tion. For this we use a Recurrent Neural Network (RNN).

For an input sequence i1, i2, . . . and the initial hidden state
s0 the RNN output is a sequence de�ned as

(ot , st ) = RNN (st�1, it ).
In our model we assume a simpler version of an RNN, where
ot = st . RNNs are able to capture dependence in the sequence
and are commonly used for text processing. In the RouteNet
a RNN is used to produce the message from the link to the
containing path. This allows us to model the sequential de-
pendence between links and propagate information about
losses through the path. If packet loss is small or none the
order of links in the path does not matter and the RNN can
be replaced by a simple summation.

Additional bene�t of using RNN (or simple summation for
that matter) for the message function is that we get for free
the solution of the third problem with (1) and (2). All build-
ing blocks of RouteNet take as an input either a hidden state
or a message. Dimensionality of both are the hyper parame-
ters of the model, thus dimensionality of the problem was34

Key insight: Graph Neural Networks are not a black box. 
Custom GNN architectures need to be research to tackle different 

networking problems.



Building a Network Digital Twin using GNNs
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• RouteNet achieves remarkable accuracy under arbitrary traffic models 

• Error when estimating the delay is <10%



Building a Network Digital Twin using GNNs
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• RouteNet speed: milliseconds
• RouteNet can scale to networks up to 

100x larger that the ones seen in 
training

• RouteNet can operate in networks 
not seen in training



• In 2023 we organized a challenge along 
with ITU
• Build the first Network Digital Twin using 

data from a real network
• Input traffic are realistic packet traces
• Baseline was RouteNet
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https://bnn.upc.edu/challenge/gnnet2023

Building a Network Digital Twin using data from Real Networks

https://bnn.upc.edu/challenge/gnnet2023


Building a Network Digital Twin using GNNs
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• RouteNet was extended to support packet-traces as 
input

• No additional changes to the architecture required
• Provides remarkable performance with error < 5% 



Conclusions
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Conclusions
Technology Accuracy Speed Why?

Emulation Poor Slow
Emulation is useful to check for configuration errors or
test the interaction between different protocols. It is not
accurate in performance estimation.

Simulation Good Slow
Simulation time scales with the amount of packets, 1min 
of a 10Gbps link takes 11h to simulate. It is too slow for
performance estimation.

Analytical Models
(Queuing Theory) Poor Fast Fast and accurate, but does not work well under

realistic traffic models (e.g., TCP)
Neural Nets (MLP and 

Recurrent NN, see Backup
slides)

Poor Fast
Fast and accurate, but it does not work in scenarios not
seen in training (e.g, Link failure)

Graph Neural Networks Good Fast
GNNs are tailored to learn network-structured data. 
They offer oustanding accuracy in scenarios not seen in 
training.
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Learn: All papers are free online
https://github.com/knowledgedefinednetworking/Papers/wiki

Play: Code and Datasets open-source
https://knowledgedefinednetworking.org

41

Code: IGNNITION framework
https://ignnition.net/

https://github.com/knowledgedefinednetworking/Papers/wiki
https://knowledgedefinednetworking.org/
https://ignnition.net/


Building a Network Digital Twin using: 
Neural Networks (MLP and RNN)

42



Building a Network Digital Twin using Neural Nets

Traffic Load
Traffic Matrix
Start/End Flow
Flow Model (VoIP, VoD, 
Web, etc)
- Inter-arrival time
- Size distribution

Topology, Link Capacity
Routing
- Overlay: SRv6, MPLS…
- Underlay: OSPF, BGP…
Scheduling Policy (arbitrary)
- Queue Length
- Policy
- Hierarchy of policies
ECMP, LAG, etc

Configuration

Time

Q
ue

ue

Queue 
Utilization

Time

De
la

y

Delay and
Jitter

Time

Dr
op

s

Losses
Time

U
til

iza
tio

n

Link 
Utilization

- Topology and Link capacity
- Underlay Routing (OSPF, IS-IS, 
etc)
- Overlay Routing (e.g, SRv6)
- Queue Policy (scheduling, size)
- ECMP weights, LAG

- Application type (ToS, etc)
- Start time and duration
- Traffic Model (VoIP, Web, VoD, 
AR/VR, etc)

Performance Network Digital Twin
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Network Digital Twin is
built using a neural network



Building a Network Digital Twin using Neural Nets

Accuracy Error (MAPE) when
estimating the delay. 

Percentage error of the real vs. 
predicted value

MLP (Fully-
connected)

Recurrent NN

Same routing as 
in training

12.3% 10.0%

Different routing
as in training

1150% 30.5%

Link Failure 125% 63.8%

• Both RNN and MLP are fast
(milliseconds)

• They scale –roughly- constantly
(O(1)) with all network
parameters

• They offer poor accuracy when
operating in configurations
(routing, link failures) not seen in 
training

It is impractical to build a Network Digital Twin 
using MLPs and RNNs because they do not
support different network topologies, routing or
link-failures
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Overview of the most common NN architectures

Type of NN Information 
Structure

Fully Connected 
NN (e.g., MLP) Arbitrary

Convolutional NN Spatial

Recurrent NN Sequential

Graph NN Relational
45

Classification, 
Unsupervised 
Learning

Images and video

Text and voice

Graphs 
(molecules, maps, 
networks)



Overview of the most common NN architectures
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RNNs, MLPs and CNNs are unable to understand
information structured as a network


