A Standard Design Language
for Autonomous Networks

Paul Harvey

paul-harvey.org

Peter Baer

&
ge)
Q
b
O
Q
L
—

7 .5“ “‘I ———

il TL*

-_n

7,'., “‘. ot ¥
J. o .

»

.....

P A P
;2

0. ol B it
https://techico/news/steets littered-z

https://www.sadanduseless.com/evil-iphones/

External Demand

+
02

@

More Users

Decreasing Fees

Tanll

High Coverage

x!
Kl\lew Communication Types

i >
)
-

(@)
&
\ 4 \ 4
M A
Network
Engineers

Internal Demand

B

= @
T

Save Power

"

Fix Faults

Increase Throughput

<

N

4

How to adapt to the unknown

Acquire
Knowledge

Analyse
Results

t Invent new approach

recompose
Improve tool

recompose

=L

Unknown Opportunity
Unknown threat /a:
[8 9
~ ¢) . [S 5

Evolutionary Autonomous Networks

Paul Harvey®, Alexandru Tatar, Pierre Imai, Leon Wong

and Laurent Bringuier

=3
¥ v
%: hhg
oo]
= n
N L T LD) i
R 7 2 I
‘ i e iy .//_1‘ . #
Network

o

Domain
Experts

&

Domain
Experts

&

Domain
Experts

Decomposed
Functional
Blocks

Evolution Controller

New Domain

Functional Blocks Experts .

Create Logic Validate Logic

Apply Logic

Ll

mu-r

Process

ITU-T Technical Specification

TELECOMMUNICATION
STANDARDIZATION SECTOR

FIT
oF Ty (28 October 2021)

ITU-T Focus Group on Autonomous Networks

Technical Specification
— Use cases for Autonomous Networks

3 Key Concepts

Architecture

138 Requirements

Architectural
components

ITU-T Y.3061

Architectural
Framework

Requirements

* Requirements for Exploratory Evolution

* Requirements for Online Experimentation

* Requirements for Dynamic Adaptation

* Requirements for Knowledge

* Requirements for Autonomous Network Orchestration

Cl) »

Definition 3.2.4: Controller

A workflow, open loop or closed loop of a system under control in an autonomous
network, composed of modules, integrated in a specific sequence, using interfaces
exposed by the modules, to solve a specific problem or satisfy a given requirement.

P / 4 <UL)

N Y, T

Al 1 6 |
Controller * ' Y,
v Cx

a

[Controllers]

RP-AN-5

Underlay Network

Hardware components] [Software components] [Orchestrator] [Controllers]

The interactions are:

e Controller interacting with hardware components.

e Controller interacting with software components.

e Controller interacting with an orchestrator or other software control mechanisms.
e Controller interacting with other controllers.

NOTE 4 - Building upon this simple representation, hierarchies of controllers may be formed. @

Exploratory Evolution

Exploratory evolution exploratory evolution introduces the mechanisms and processes of
exploration and evolution to adapt controllers in response to changes in the underlay network.

NOTE 1 - An example of a process that creates a controller is the composition of controllers from
modules or other closed loops. This may involve the selection of modules which are used for

composition.

NOTE 2 - An example of a process that modifies an existing controller is the dynamic change in the
controller’s structure by adding new modules, deleting existing modules, replacing existing
modules, or rearranging the structure of a controller’s modules, in accordance with the real time

changes in the system under control.

~ 470 @

Controller Exploratory Evolution Controller Controller

&)

Exploratory Evolution

Knowledge Base Subsystem Y °* 3.2.7 Evolution controller: A controller responsible
for the evolution of controllers by manipulating the
Information Bases module instance used within a controller, the structure
Data Software Utility or topology of connections between modules in a
[repository } {C"”tm”ers] Functions controller and/or the values chosen for the module(s)
parameters
RP-AN-3 . - p- -
I « Examples of processes to drive the modification of a
Exploratory Evolution subsystem controller are:
 Dbiologically inspired artificial evolution(e.g
[Evolution controllers J evolutionary computing or genetic programming
[b-large-evolution, b-evolution])
IRP_AN_4 » Bayesian optimisation [b-bayesian-radio]
« game theoretic approaches [b-game-theory].

Dynamic Adaptation subsystem

&

Examples of Controller Evolution

1) A “RAN channel scheduling controller” is an example of a controller used to allocate radio resources to users
in @ multi-user environment. Exploratory evolution is applied to a RAN channel scheduling controller in
response to the change of radio channel feedback from the UE. This may include selecting the most appropriate
algorithm from a set of alternatives.

2) An “anomaly detection controller” is an example of a controller used to detect abnormal states in the
operation of a network service, such as security attacks or peaks in resource usage for network function. In this
context, the new approaches of data fusion algorithms [b-data-fusion] may be applied. Exploratory evolution is
applied to “anomaly detection controller” by optionally using and configuring newly provided data fusion
algorithms as the input of an “anomaly detection controller”,

3) A “time-to-live controller” is an example of a controller used to configure the time duration for which a
certain content is cached in a CDN server. In a time-to-live controller in a caching system at the edge,
optimisation of the timeout parameter(s) is an example of application of exploratory evolution.

4) A “scaling controller” is an example of a controller used to increase or decrease the resource allocation for a
network function. In this context, exploratory evolution may be applied by controlling the configuration of the
scaling method of deployed controllers in a specific network domain.

Realtime Online Experimentation

3.2.8 Experimentation: The process of executing the generated potential scenarios
and trials upon the controllers, within the parameters of the scenarios and trials and
then collecting the results.

Stage 1: Stage 2: Stage 3:
Sanity Checks Simulation Canary Testing
C Y A =
L=
g ab
=5 [l

Controller |

AN Orchestrator

Realtime Online Experimentation

RP-AM-8

Knowledge Base subsystem

I RP-AN-3

Experimentation subsystem

|

Experimentation AN
Controller Sandbox

RP-AN-10

)

RP-AN-2

Dynamic Adaptation subsystem

[JO01E1}5242J0 ¥4O0Ml=aN 7]

3.2.9 experimentation controller: A controller which
generates potential scenarios of experimentations
based on controller specifications and additional
information as provided by the knowledge base,
executes the scenarios in the AN Sandbox, collates
and validates the results of the experimentation.

Examples of Controller Experimentation

Examples of experimentation in various application contexts are given below:

The use of static “sanity checking” such as formal methods [ITU-T Y.3320] or model checking to ensure that
provided management and orchestration solutions are well-formed against pre-defined rules

The use of simulators or digital twins in offline validation of controllers. These simulators or digital twins
can support the same interfaces as underlays.

The use of digital twins [b-Digital-twin] in online validation of controllers before deployment

 NOTE 5 - online validation involves use of timescales comparable to real underlays e.g. validation of
controllers (xApps) [b-ORAN] using digital twins.

Combinations of the above to achieve broader coverage of validation, from the offline validation to online
validations during the operation of the underlay.

Dynamic Adaptation

» Dynamic adaptation is the process of continuous integration of controllers to an underlay, as the underlay
undergoes changes at run-time. Integration of controllers may involve multiple domains of the underlay.

Controller Controller Controller

10s 20s J0s 405 50s 1m Im 10s 1m 20s 1m

AN Orchestrator

Dynamic Adaptation

3.2.1 adaptation controller: A controller
responsible for selecting candidate controllers
ready for integration and for executing their

Knowledge Base Subsystem

information Bases integration in the underlay network.
Data] [Software] [controllers] [Utility]
| repository Modules Functions
7 . Adaptation controller has two parts:
I Autonomy Engine I) .)
! Py———— Eploratory vt] - Curation controller (responsible for selection
eanz | subsystem subsystem E - and maintenance of the controllers within the
| e e e e e e e e e e e e e o e e e e e e e e e e e e e oo —_ .
IRP ») curated controller lists from the evolvable
v 3 controllers) and
AL Dynamic Adaptation subsystem I §
[Selection] [Curstion) (" Operation | (T Semice) > o | - Selection Controller (responsible for the
controllers controllers controllers endpoint o lect; f a services’ operational controller
s Selection O Vv
RP-AM-5 : .
t RPANE | from the curated controller lists).
[Underlay Network =

Examples of Dynamic Adaptation

Examples of adaptation in various application contexts are given below:

The need to use different traffic shaping algorithms for various geographical contexts, such as
urban vs rural

Business priorities may change over a period of time, e.g. prioritization of performance KPIs over
energy efficiency or prioritisation of internal applications over third party applications. These
changes in business priorities may necessitate the use of different virtual machine or container
scheduling controllers.

There could be a need to deploy new technology in order to improve or optimise operation,
Including adding new capabilities that previously did not exist. E.g. new Al/ML algorithms or
new data fusion approaches to blend the increasing number of data sources.

There could be a need to deploy new technology in order to address errors or faults. E.g. data
acquisition or actuation software for new hardware devices or adaptation software to account for
Incompatibilities in deployed technology.

Architecture Components

Evolution Controller Knowledge Base

Manages knowledge derived from
and used in autonomous networks. It

Creates and modifies a controllerin
accordance with the system under

control and the real-time changes is updated and accessed by various
therein. components in the autonomous
network.
Experimentation Controller An Sandbox

environment in which controllers can
be deployed, experimentally
validated with the help of (domain
specific) models of underlays

Validates controllers using inputs
from a combination of underlay
network, simulators and/or testbeds.

AN Orchestrator

managing workflows and processes in the
AN and steps in the lifecycle of controllers

Adaptation Controller

Continuousintegration of controllers
to an underlay, as the underlay
undergoes changes at run-time.

Architecture Components

Evolution Controller

Creates and modifies a controllerin
accordance with the system under
control and the real-time changes
therein.

Experimentation Controller

Validates controllers using inputs
from a combination of underlay

network, simulators and/or testbeds.

FGAN-I-345-R2
4 N
Knowledge Base AN Orchestrator
. J

Manages knowledge derived from
and used in autonomous networks. It managing workflows and processes in the

is updated and accessed by various

AN and steps in the lifecycle of controllers

components in the autonomous

network.

An Sandbox

Adaptation Controller

environment in which controllers can
be deployed, experimentally
validated with the help of (domain

Continuousintegration of controllers
to an underlay, as the underlay
undergoes changes at run-time.

specific) models of underlays

RP-AMN-1

Knowledge Base subsystem

{ Information Bases J RP-AN-6 >
r Y
RP-AN-3 RP-AN-7
- T T T TTEEEEEEEEEEEEE ST A . A
I Autonomy Engine I
|) ' >
| Exploratory Evolution subsystem | =
~ I . I RP-AN-8 o RP-AN-9
f:l 1 Evolution 3 4 >
a [controllers | -
= M
1 I e
| I =
1 Experimentation subsystem | E* RP-AN-10
I : (o >
Experiment -
| [P][AN Sandbox] |
I controller I
\ - _ _ - 7
RP-AN-11
RP-AN-4
hJ
Dynamic Adaptation subsystem RP-AN-12
Curation Selection Operation Service < >
controllers controllers controllers endpoint
RP-AN-5
RP-AN-13
M

Underlay Network

[Hardware components] { Software components J { Orchestrator J { Controllers J

101e11S3Y2.0 YJoMIaN 373

3 Key Concepts

RP-AMN-1

Knowledge Base subsystem

{ Information Bases J RP-AN-6 >
r Y
RP-AN-3 RP-AN-7
t - T s s === s Ts === \ —Y
[Autonomy Engine |
I . [>
| Exploratory Evolution subsystem | =
~ I . I RP-AN-B e RP-AN-9
flc 1 Evolution 3 4 >
a [controllers | =
=)
1 I s
| | 5
| Experimentation subsystem I g RP-AN-10 >
[: [
Experiment -
| [P][AN Sandbox] |
I controller I
\ - - - - - _ _ - _ ____—_ 7
RP-AN-11
RP-AN-4
h
Dynamic Adaptation subsystem RP-AN-12
Curation Selection Operation Service >
controllers controllers controllers endpoint
RP-AN-5
RP-AN-13
M

Underlay Network

[Hardware components] { Software components J { Orchestrator J { Controllers J

101e11S3Y2.0 YJoMIaN 373

Intent
mms Authorization HEEE)
Order
Trustor Trustee
in AN in AN
Explanation
@ Executive result Hmmm
Feedback

“Trust in Autonomous Networks” - https://extranet.itu.int/sites/itu-t/focusgroups/an/input/FGAN-1-094.docx

’ Mm, Responsible for overal
Erolinn CDN Performance
(KPls, Health etc)
nsible for specific CON
Meta Evol\:on mem KPI; (Geogrlpmml
il Throughput, Latency etc)

Responsible for

) Individual Varish

CacheVCL performance
Evolutionary/Operational Boundary
Responsible for specific
Operation Controller ‘Operation Controller Operation Controller "
[s) J[D)][T iﬁu:mmsmmnﬂsVCL

I

Translates the Operation
VCLWriter Controller configurations
into a VCL File
Deploys a VCL File onto
VCLDeployer atarget Varnish Cache

Towards evolution-based
autonomy in large-scale systems.

Evolutionary Autonomous
Networks

Evolution Controller

Create

Apply optimal
&t configuration

Network Optimizer
o 5 (e.g. DRL, CP, ILP)

Network Operator
Network performance metrics New network
(e.g., delay, link utilization) 9 0 configuration
(e.g., routing) NETWORK

INFRASTRUCTURE

New network event
(e.g., link failure)

Network Digital Twin: Context,
Enabling Technologies and
Opportunities

Validate

Blockchain Marketplace For
Autonomous Networks

FedFly: Towards Migration in Edge-

based Distributed Federated Learning

322

. ' @ &

Resume raining

o
.

Federated Learning Rounds

'\/ (Roun
D
(4) -

(4) Offloading Strategy

(1) Observation
0 U, T, Nﬂ‘n]
§ ‘ {1, T4, Net?,]

AR (041, T, Nethy.1]

(
v |

| PRE-PROCESSOR | | POST-PROCESSOR

Ofﬂoud\ng PDIm
]

+
(3) Action
RAINED
cmermameonz L s.,.
LEARNING | AGENT

FEDADAPT FRAMEWORK

FedAdapt: Adaptive Offloading for
loT Devices in Federated Learning

Herding the FLOQ: Flow
Optimised Queueing

& Packet [=
) Packet
" Packet

Figure 1: RTO Delay

Controller server

Varnish log

~

A Feasibility Study of Cache in
Smart Edge Router
for Web-Access Accelerator

Create Logic

Evolutionary Computing

Fitness Function Decomposition
Ontology Guided Creation
Meta-evolution

Automated Code Synthesis

Apply Logic

Resource Allocation Problems
Parallelisation

Virtualisation

Information Centric Networking
Telco Cloud / O-RAN

Validate Logic

e Digital Twin

e Formal Verification

e Co-simulation

* Experimental Design
e Chaos Testing

—

Ontology & Taxonomy Generation
Levels of Autonomy

Intent-Based Systems/Networks
Explainable Operation

www.paul-harvey.org

@jhebus

http://www.paul-harvey.org/

	Slide 1: A Standard Design Language for Autonomous Networks
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: 100 Years Later…
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Process
	Slide 12: Requirements
	Slide 13
	Slide 14: Definition 3.2.4: Controller
	Slide 15
	Slide 16: Exploratory Evolution
	Slide 17: Exploratory Evolution
	Slide 18: Examples of Controller Evolution
	Slide 19: Realtime Online Experimentation
	Slide 20: Realtime Online Experimentation
	Slide 21: Examples of Controller Experimentation
	Slide 22: Dynamic Adaptation
	Slide 23: Dynamic Adaptation
	Slide 24: Examples of Dynamic Adaptation
	Slide 25: Architecture Components
	Slide 26: Architecture Components
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

