
A Standard Design Language
for Autonomous Networks

Paul Harvey
paul-harvey.org

Peter Baer

The Dream

6
© 2021 Rakuten Mobile Innovation Studio

100 Years Later…

https://www.sadanduseless.com/evil-iphones/https://tech.co/news/steets-littered-adult-pokemon-go-players-2016-07

External Demand Internal Demand

New Communication Types

High Coverage

Decreasing Fees

More Users
Reduce OPEX

Increase Throughput

Fix Faults

Save Power

Network
Engineers

How to adapt to the unknown

Experiment

Discover
Create

Analyse
Results

Acquire
Knowledge

Improve tool
recompose

Invent new approach
recompose

Unknown threat
Unknown Opportunity

Apply Logic

Create Logic Validate Logic

Process

3 Key Concepts Architecture

138 Requirements

Architectural
components

Architectural
FrameworkITU-T Y.3061

Requirements

• Requirements for Exploratory Evolution

• Requirements for Online Experimentation

• Requirements for Dynamic Adaptation

• Requirements for Knowledge

• Requirements for Autonomous Network Orchestration

Controller Controller

Definition 3.2.4: Controller

A workflow, open loop or closed loop of a system under control in an autonomous
network, composed of modules, integrated in a specific sequence, using interfaces
exposed by the modules, to solve a specific problem or satisfy a given requirement.

Controller

The interactions are:

• Controller interacting with hardware components.

• Controller interacting with software components.

• Controller interacting with an orchestrator or other software control mechanisms.

• Controller interacting with other controllers.

NOTE 4 - Building upon this simple representation, hierarchies of controllers may be formed.

Exploratory Evolution

Exploratory evolution exploratory evolution introduces the mechanisms and processes of
exploration and evolution to adapt controllers in response to changes in the underlay network.

NOTE 1 - An example of a process that creates a controller is the composition of controllers from
modules or other closed loops. This may involve the selection of modules which are used for
composition.

NOTE 2 - An example of a process that modifies an existing controller is the dynamic change in the
controller’s structure by adding new modules, deleting existing modules, replacing existing
modules, or rearranging the structure of a controller’s modules, in accordance with the real time
changes in the system under control.

Controller ControllerControllerExploratory Evolution

• 3.2.7 Evolution controller: A controller responsible

for the evolution of controllers by manipulating the

module instance used within a controller, the structure

or topology of connections between modules in a

controller and/or the values chosen for the module(s)

parameters

• Examples of processes to drive the modification of a

controller are:

• biologically inspired artificial evolution(e.g

evolutionary computing or genetic programming

[b-large-evolution, b-evolution])

• Bayesian optimisation [b-bayesian-radio]

• game theoretic approaches [b-game-theory].

Exploratory Evolution

Examples of Controller Evolution

1) A “RAN channel scheduling controller” is an example of a controller used to allocate radio resources to users
in a multi-user environment. Exploratory evolution is applied to a RAN channel scheduling controller in
response to the change of radio channel feedback from the UE. This may include selecting the most appropriate
algorithm from a set of alternatives.

2) An “anomaly detection controller” is an example of a controller used to detect abnormal states in the
operation of a network service, such as security attacks or peaks in resource usage for network function. In this
context, the new approaches of data fusion algorithms [b-data-fusion] may be applied. Exploratory evolution is
applied to “anomaly detection controller” by optionally using and configuring newly provided data fusion
algorithms as the input of an “anomaly detection controller”,

3) A “time-to-live controller” is an example of a controller used to configure the time duration for which a
certain content is cached in a CDN server. In a time-to-live controller in a caching system at the edge,
optimisation of the timeout parameter(s) is an example of application of exploratory evolution.

4) A “scaling controller” is an example of a controller used to increase or decrease the resource allocation for a
network function. In this context, exploratory evolution may be applied by controlling the configuration of the
scaling method of deployed controllers in a specific network domain.

Realtime Online Experimentation

3.2.8 Experimentation: The process of executing the generated potential scenarios
and trials upon the controllers, within the parameters of the scenarios and trials and
then collecting the results.

Controller

Realtime Online Experimentation

3.2.9 experimentation controller: A controller which

generates potential scenarios of experimentations

based on controller specifications and additional

information as provided by the knowledge base,

executes the scenarios in the AN Sandbox, collates

and validates the results of the experimentation.

Examples of Controller Experimentation

Examples of experimentation in various application contexts are given below:

• The use of static “sanity checking” such as formal methods [ITU-T Y.3320] or model checking to ensure that
provided management and orchestration solutions are well-formed against pre-defined rules

• The use of simulators or digital twins in offline validation of controllers. These simulators or digital twins
can support the same interfaces as underlays.

• The use of digital twins [b-Digital-twin] in online validation of controllers before deployment

• NOTE 5 - online validation involves use of timescales comparable to real underlays e.g. validation of
controllers (xApps) [b-ORAN] using digital twins.

• Combinations of the above to achieve broader coverage of validation, from the offline validation to online
validations during the operation of the underlay.

Dynamic Adaptation

• Dynamic adaptation is the process of continuous integration of controllers to an underlay, as the underlay
undergoes changes at run-time. Integration of controllers may involve multiple domains of the underlay.

Controller ControllerController

Dynamic Adaptation
3.2.1 adaptation controller: A controller

responsible for selecting candidate controllers

ready for integration and for executing their

integration in the underlay network.

Adaptation controller has two parts:

- Curation controller (responsible for selection

and maintenance of the controllers within the

curated controller lists from the evolvable

controllers) and

- Selection Controller (responsible for the

selection of a services’ operational controller

from the curated controller lists).

Examples of Dynamic Adaptation

Examples of adaptation in various application contexts are given below:

• The need to use different traffic shaping algorithms for various geographical contexts, such as
urban vs rural

• Business priorities may change over a period of time, e.g. prioritization of performance KPIs over
energy efficiency or prioritisation of internal applications over third party applications. These
changes in business priorities may necessitate the use of different virtual machine or container
scheduling controllers.

• There could be a need to deploy new technology in order to improve or optimise operation,
including adding new capabilities that previously did not exist. E.g. new AI/ML algorithms or
new data fusion approaches to blend the increasing number of data sources.

• There could be a need to deploy new technology in order to address errors or faults. E.g. data
acquisition or actuation software for new hardware devices or adaptation software to account for
incompatibilities in deployed technology.

Evolution Controller

Experimentation Controller

Knowledge Base

Adaptation Controller

AN Orchestrator

An Sandbox

Architecture Components

Creates and modifies a controller in
accordance with the system under
control and the real-time changes
therein.

Manages knowledge derived from

and used in autonomous networks. It

is updated and accessed by various

components in the autonomous

network.

Validates controllers using inputs

from a combination of underlay

network, simulators and/or testbeds.

Continuous integration of controllers
to an underlay, as the underlay
undergoes changes at run-time.

managing workflows and processes in the
AN and steps in the lifecycle of controllers

environment in which controllers can
be deployed, experimentally
validated with the help of (domain
specific) models of underlays

Evolution Controller

Experimentation Controller

Knowledge Base

Adaptation Controller

AN Orchestrator

An Sandbox

Architecture Components

Creates and modifies a controller in
accordance with the system under
control and the real-time changes
therein.

Manages knowledge derived from

and used in autonomous networks. It

is updated and accessed by various

components in the autonomous

network.

Validates controllers using inputs

from a combination of underlay

network, simulators and/or testbeds.

Continuous integration of controllers
to an underlay, as the underlay
undergoes changes at run-time.

managing workflows and processes in the
AN and steps in the lifecycle of controllers

environment in which controllers can
be deployed, experimentally
validated with the help of (domain
specific) models of underlays

FGAN-I-345-R2

3 Key Concepts

“Trust in Autonomous Networks” - https://extranet.itu.int/sites/itu-t/focusgroups/an/input/FGAN-I-094.docx

Towards evolution-based
autonomy in large-scale systems.

1

2

3

4

5

ETHEREUM

FedFly: Towards Migration in Edge-
based Distributed Federated Learning

FedAdapt: Adaptive Offloading for
IoT Devices in Federated Learning

Herding the FLOQ: Flow
Optimised Queueing

A Feasibility Study of Cache in
Smart Edge Router

for Web-Access Accelerator

Evolutionary Autonomous
Networks

Network Digital Twin: Context,
Enabling Technologies and

Opportunities

Blockchain Marketplace For
Autonomous Networks

Create Validate

Apply

www.paul-harvey.org
@jhebus

Create Logic Validate Logic

Apply Logic

• Evolutionary Computing
• Fitness Function Decomposition
• Ontology Guided Creation
• Meta-evolution
• Automated Code Synthesis

• Resource Allocation Problems
• Parallelisation
• Virtualisation
• Information Centric Networking
• Telco Cloud / O-RAN

• Digital Twin
• Formal Verification
• Co-simulation
• Experimental Design
• Chaos Testing

Aid Logic

• Ontology & Taxonomy Generation
• Levels of Autonomy
• Intent-Based Systems/Networks
• Explainable Operation

http://www.paul-harvey.org/

	Slide 1: A Standard Design Language for Autonomous Networks
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: 100 Years Later…
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Process
	Slide 12: Requirements
	Slide 13
	Slide 14: Definition 3.2.4: Controller
	Slide 15
	Slide 16: Exploratory Evolution
	Slide 17: Exploratory Evolution
	Slide 18: Examples of Controller Evolution
	Slide 19: Realtime Online Experimentation
	Slide 20: Realtime Online Experimentation
	Slide 21: Examples of Controller Experimentation
	Slide 22: Dynamic Adaptation
	Slide 23: Dynamic Adaptation
	Slide 24: Examples of Dynamic Adaptation
	Slide 25: Architecture Components
	Slide 26: Architecture Components
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

