

Name-based QoS for Name-based Networks

University of Glasgow — School of Computing Science

Ryo Yanagida@glasgow.ac.uk

Project members: Dr Colin Perkins, Dr Jeremy Singer, Dr Paul Harvey

School of Computing Science

WORLD

UNIVERSITY

- The Internet today is converging towards request-response structure
- Scaling and improving performance is complex
 - AnyCast
 - CDN
 - Complex proxying and indirections
- ICN routes packets using name and name-prefixes hosts can offer

• Current Internet sets up individual flows between the two hosts

• Current Internet sets up individual flows between the two hosts

- Routing over names:
 - Brings key information about the data
 - Requests can be aggregated
 - Data can be cached on-path
 - Lightweight Mobility support (the data delivery traces Interest packet path)
 - No IP address management

Name and Name-prefix

- ICN data have names:
 - Consumers use <u>names</u> to request data from Producer
 - Forwarder forwards interest packets using **<u>name-prefixes</u>**
- **<u>Names</u>** can be flat but structured/hierarchical approach seems to make sense:
 - We see this in URL paths today
 - /<domain>/<URI-esque path>/<segmenting>
 - /netflix/live/football/2024-04-12-ManU_vs_City.mp4/24
 - Prefix: /netflix/live/*

Quality of Service mechanisms today

- DiffServ
 - Relative prioritisation/deprioritisation
 - Scheduling mechanisms to enable certain characteristics — Per-hop Behaviours (PHBs)
 - Best Effort
 - Assured Forwarding
 - Expedited Forwarding
 - Lower effort
 - PHBs in a packet field as DSCP
 - Often 'bleached' at the network
 boundaries
 - Set by application or traffic classifier node

- IntServ + RSVP
 - Explicit resource reservation
 - Negotiates across the whole path
 - Heavy weight
 - Difficult to deploy

Current QoS proposals for ICN protocols

- Many are:
 - IntServ+RSVP style
 - Explicit approach
 - Resource reservation type
- Similar downside/challenges follows
 - Deployability
 - Scalability
 - Requires consensus amongst all parties on the path
 - Requires specific knowledge about the data in advance
 - Some proposals are application specific

Name-based QoS for ICN

Name-prefix based approach for QoS

Purely name-prefix based approach

- Approach similar to Diffserv in terms of the prioritisation/scheduling
 - Relative prioritisation/de-prioritisation
 - Queueing/scheduling follows Diffserv code points (PHBs)
- Policy contains:
 - Name-prefix
 - Forwarding Behaviours (FWBs) Equiv. PHBs
 - Code point and behaviours inherits Diffserv PHBs
 - Reuse as much of the scheduling/queueing behaviours of diffserv
 - Caching Behaviours (CBs) New set of behaviours to bias caching behaviours

Name-based QoS — approach cont.

- Structured name:
 - URIs today already use a hierarchical naming structure
 - Logical to continue this in ICN
- Completely name-based approach:
 - No markings on the packet itself in transit forwarder holds the policy and applies them
 - No bleaching, no tampering on-path (name is fundamental to forwarding)
 - Incrementally deployable Not all nodes have to have the mechanism
 - The network <u>operator has the full control</u> over how a particular prefix receives the QoS policy treatment
 - No need to change applications

Current progress

- Simulation with ndnSIM
 - ns-3 based simulator with <u>real</u> NDN library + Forwarder code
 - The forwarder and the library modified to implement the QoS mechanism
 - QoS policy table in the modified forwarder
 - Table look-up operations in the modified forwarder to identify prioritised prefix
 - Ns-3 traffic control layer priority queueing
 - Marking the packet representation for queue to identify traffic class (but marking is not in the packet itself)
 - <u>**PoC**</u> hard-coded, very early work, on a single forwarder

Current progress

- Simulation with ndnSIM
 - PoC hard-coded very early work on single forwarder
 - Link latency 10ms
 - Two consumer hosts:
 - One requesting prioritised '/prio/*' names
 - One requesting non-prioritised '/prefix/*' names
 - 180 req./sec
 - One producer and one Forwarder

	Min	1st Qu.	Median	Mean	3rd Qu.	Max
Prioritised (s)	0.045 87	0.11039	0.17627	0.17638	0.24216	0.30804
Non- Prioritised (s)	0.048 73	0.11325	<mark>0.17914</mark>	0.17924	0.24502	0.31090

Next steps

- This work identifies the <u>'knobs and the levers'</u>
- Develop an appropriate management protocol to manage the forwarder:
 - Distribute/manage policies
 - Dynamically update policies
- Consider what Caching Behaviour (CB) code-point should be
- Questions about how various states/complexity shifts:
 - Diffserv holds policy label on the packet, this Name-based QoS holds them in forwarders, how does this affect scalability against increasing flows, prefixes, etc.?

Ryo Yanagida Ryo.Yanagida@glasgow.ac.uk ryo@htonl.net