@ University S |nternet Protocols
> of Glasgow SN | aboratory

Autonomous networks need standards

Colin Perkins

@ @ @ Colin Perkins | https://csperkins.org/ | Copyright © 2024 University of Glasgow | This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
http://creativecommons.org/licenses/by-nd/4.0/

Autonomous
networks need standards

Standard protocols
Standard management APls
Common infrastructure
...as a substrate for autonomous reasoning

@ @@ Colin Perkins | https://csperkins.org/ | Copyright © 2024 University of Glasgow

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

standards are slow

Effective standards require consensus
Consensus takes time

@ @ @ Colin Perkins | https://csperkins.org/ | Copyright © 2024 University of Glasgow 3

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

o1a| Universit
of Glasg()v}\]f

standards are getting slower

| —— OHGIDY
IK WK SHUFHOILH

 |[ETF standards are taking longer to publish, but
page counts remain broadly constant

 The median number of days to publication was
469 in 2001, rising to 1170 in 2022

"D\V IURP LUV GUDINIR 5) & SXEWLFDILRQ

<HDU

‘@ @ @ \ Colin Perkins | https://csperkins.org/ | Copyright © 2024 University of Glasgow 4

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

University

of Glasgow

standards are getting slower

£ { —— OHGIDQ —— OHGIDQ] — oHalpg
T IK UK SHUFHQILH . IK WK SHUFHOILH K 1K SHUEHQLH
S o N
= - -
i)
=
<HDU
<HDU <HDU
Median number of revisions made New drafts are citing increasing Drafts are increasingly using
prior to publication has doubled numbers of prior RFCs normative language

‘@ @ @ \ Colin Perkins | https://csperkins.org/ | Copyright © 2024 University of Glasgow 5

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

This Is normal and expected

@ @ @ Colin Perkins | https://csperkins.org/ | Copyright © 2024 University of Glasgow 6

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

How to improve

standards o
productivity?

e New directions

e Standards development is slow due to the complexity of the deployed base

e Continual reinvention solves the problem — new topics, new standards

e But the core infrastructure needs to evolve

* Need better ways to build standards

‘@ @ @ \ Colin Perkins | https://csperkins.org/ | Copyright © 2024 University of Glasgow

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

University

EpieiisMll Limiting Factors

VIA VERITAS VITA

e Consensus takes time

e Cognitive limits of standards developers

 Feedback loop between standards documents and consensus building

 Improve the way we write documents

* Improve the way we reach consensus

@ @ @ Colin Perkins | https://csperkins.org/ | Copyright © 2024 University of Glasgow 8

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

E}Eﬁigggz Improving the Standards Process

* Goal: increase testability of specifications, reduce cognitive load

e Extract features from work-in-progress standards
 Packet formats and parsers

e State machines

* Find bugs during development — not when PhD students run formal analysis
tools on published standards

e Make the idea of automated protocol testing and analysis a normal part of the
standards process

‘@ @ @ \ Colin Perkins | https://csperkins.org/ | Copyright © 2024 University of Glasgow 9

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

University

el Structured Parsing

VIA VERITAS VITA

0] 1 2 3

01234567890123456789012345678901 .
s T S T T T Tt S S T EHIECIIV6I3++
|lv=2|P|X] CC |M]| PT | sequence number I Third Edjtion
s e o T T T T e St S 55 Specifig

-Nosiaay ¢

| timestamp Your Proge

t—t—t—t—t—t—t—t—t—t—t—t—t—F—t—t—F—t—t—F—t—t—F—t—F—F—t—F—F—F—F—F—

Scott Meyers
| synchronization source (SSRC) identifier
+=+=t+=t+=t+=t=t=t+=+=+=+=+=+=+=+=+=t=t+=t+=t+=t+=t+=+=+=+=+=+=+=+=+=+=+=
| [CSRC identifier list]

I (4 * CC octets)

| CC may be zero
+ot—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t =ttt —t -ttt -ttt —t—+—

IHE
h —ie) \

OREILLY"

@

=

Programming

II|—1

|
+
I
+
|
I
I
+ -+
| defined by signalling | header extension length (-
tot—+ |
header extension | | OPTIONAL
format defined by signalling [| (if X=1)
(I
(.
(.
+ -+
|
I
I
I
|

|
I
|
I
|
+—t—t—t—t—t—t—t—t—t -ttt -ttt -ttt -ttt -ttt -ttt —F—F—

Payload
(variable format and length, depends on PT)

I
I
|
¢ |
I
|
|

|Padding (PadCnt octets, if P=1)|PadCnt (if P=1)| N
e S YN AT N[N RN SOV A, N ST, N, N T, N O O O O SO N S '

L

L

[
N
. R SeeemstammuamERT
|)

.

)

 Basic type is a bit string

4 * Add struct and enum-like types

* Impose enough structure on existing ad-hoc . E . o determi t optional field
formats to be parsable — but not so much that XPressions 1o determine presence ot optional ields
» Constraints on field sizes and values

they become hard to write by hand - Persistent parsing state

 Transformation function

‘@ @ @ \ Colin Perkins | https://csperkins.org/ | Copyright © 2024 University of Glasgow 1 O

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

University

reeal Representing State Machines (1/2)

8
VIA VERITAS VITA

. . 1| T = s[su]:ss® tcb_new(TcbInfo).ss&{
* Session types can model protocol state machines 2| error_no_rooa(errortasutticienthesources).en
3 tcb_created(SocketFd).uT.ss&{
4 read_queue(Data).ss @ {
5 write_queue(Data).T,
6 close_init(Close).ss&close_init(Close).ss&close_init(Close).end}
7 close_init(Close).ss&close(Close).end
. . 8)
9 connection_aborted(Close).end},
* Atyped model of communication ol e mection shorted(@ose)enth . 104 o can
11 error_no_room(ErrorInsufficientResources).end, Three-way Handshake
. 12 tcb_created(SocketFd).cs&syn(SynSet).cs @ syn_ack(SynAckSet).uT.cs&{
* Derive from text of protocol standards document — 1 scceptable(AciSet).cu © read.queue(Data)-sul
g . 14 write_queue(Data).cs @ {
I I 15 acceptable(AckSet).T, Connection Failure
Cu rre nt y m a n u a Y al m I n g to a Uto m ate 16 rto_exceeded(AckSet).cs&msmit(AckSet).cs @ {
17 ack(Ack).T,
- £ - 18 retry_threshold_exceeded(RstSet).su @ connection_aborted(Close).end},
 Type check to ensure consistency of specification 19 close_inte(oione) o0 & Fin(EinSer) bl aremn ron e cose).end))
20 fin_ack(FinAckSet).ss @ ack(AckSet).cu @ close(Close).end, Simultaneous Close
21 fin(FinSet).ss&ack(AckSet).ss @ ack(AckSet).cu @ close(Close).end}},
22 rto_exceeded(AckSet).ss&retransmit(AckSet).ss @ {
23 ack(Ack).T,
24 retry_threshold_exceeded(RstSet).su @ connection_aborted(Close).end},
25 fin(FinSet).su ® close_init(Close).ss&ack(AckSet).ss @ ack(AckSet).cu @ close(Close).end}},
26 s[cs| : cu&tcb_new(TcbInfo).cu @ {
27 error_no_room(ErrorInsufficientResources).end,
28 tcb_created(SocketFd).ss @ syn(SynSet).ss&syn_ack(SynAckSet).uT.cu&{
29 write_queue(Data).ss @ {
30 acceptable(AckSet).ss&{
31 acceptable(AckSet).cu @ read_queue(Data).T,
32 fin(FinSet).cu @ close_init(Close).cu&close_init(Close).ss @ {
33 fin_ack(FinAckSet).ss&ack(AckSet).cu @ close(Close).end,
34 fin(FinSet).ss&ack(AckSet).ss @ ack(AckSet).cu @ close(Close).end},
35 rto_exceeded(AckSet).ss @ retransmit(AckSet).ss&{
36 ack(SegAckSet).T,
37 retry_threshold_exceeded(SegRstSet).cu @ connection_aborted(Close).end}},
38 rto_exceeded(AckSet).ss @ retransmit(AckSet).ss&{
39 ack(SegAckSet).T,
40 retry_threshold_exceeded(SegRstSet).cu @ connection_aborted(Close).end},
41 fin(FinSet).ss&ack(AckSet).ss @ ack(AckSet).cu @ close(Close).end}},
42 s[cu] : cs @ tcb_new(TcbInfo).cs&{
43 error_no_room(ErrorInsufficientResources).end,
44 tcb_created(SocketFd).uT.cs @ {
@ @ @ Colin Perkins | https://csperkins.org/ | Copyright © 2024 University of Glasgow ig mtfg;l;e:fégzz;;;is)‘%
47 close_init(Close).client_system @ close_init(Close).client_system&close(Close).end},

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Representing State Machines (2/2)

pub type ServerSystemSessionType = St! |
(RoleServerUser & Open).
(RoleServerUser + TcbCreated).
(RoleClientSystem & Syn).

 Atyped model of communication (RoleClientSystem + SynAck).

ServerSystemSynRcvd

e Session types can model protocol state machines

e Derive from text of protocol standards document — 1;

currently manual, aiming to automate Rec! (pub ServerSystemSynRcvd, |

(RoleClientSystem & {
Ack. // acceptable
(RoleServerUser + Connected).

* Type check to ensure consistency of specification

_ _ ServerSystemCommLoop,
 Derive Rust code automatically from typed model of Ack. // unacceptable
the protocol (RoleClientSystem + {
. . . . Ack.ServerSystemSynRcvd,
* Type check implementation for consistency with Rst. (RoleServerUser + Close) .end
the specification 1)

})
1)

12

‘@ @ @ \ Colin Perkins | https://csperkins.org/ | Copyright © 2024 University of Glasgow

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

Lessons Learned (1/2)

Modelling real-world protocols is feasible

TCP packet parser derived from unmodified RFC 9293

TCP state machine derived from session type model

Proof-of-concept, but especially robust, but interwork with other
TCP implementations

‘@ @ @ \ Colin Perkins | https://csperkins.org/ | Copyright © 2024 University of Glasgow

13

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

E}%ﬁigggz Lessons Learned (2/2)

 Packet formats have surprising complexity * |RTF research group starting to think about

« Typed packet description languages feasible these issues in the standards community:

and integrate with existing standards process o Usable Formal Methods Research Group
e Session types have potential for protocol o https://www.irtf.org/ — UFMRG

and implementation verification, but need » https://datatracker.ietf.org/rg/ufmrg/about/
integration with the standards process
» Different styles of specification — formal vs. 60 & o508

informal, but also difference in approach to & ©

specifying protocols W\/\//\:

<> & <><><><><>

e Session types model sequence of endpoint
behaviour rather than state-based approach 1 X T F

e Session types describe expected behaviour,

REC has more focus more on failure modes * \Would value more input from this community

‘@ @ @ \ Colin Perkins | https://csperkins.org/ | Copyright © 2024 University of Glasgow 1 4

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/
https://www.irtf.org/
https://datatracker.ietf.org/rg/ufmrg/about/

University

of Glasgow

VIA VERITAS VITA

Session Types for the Transport Layer: Towards an
Implementation of TCP*

Samuel Cavoj Ivan Nikitin Colin Perkins
samuel@cavoj .net ivan@niktivan.org cspQcsperkins . org
University of Glasgow University of Glasgow University of Glasgow
Ornela Dardha

ornela.dardhaOglasgow. ac.uk

University of Glasgow

Session types are a typing discipline used to formally describe communication-driven applications
with the aim of fewer errors and easier debugging later into the life cycle of the software. Protocols at
the transport layer such as TCP, UDP, and QUIC underpin most of the communication on the modern
Internet and affect billions of end-users. The transport layer has different requirements and constraints
compared to the application layer resulting in different requirements for verification. Despite this,
to our best knowledge, no work shows the application of session types at the transport layer. In
this work, we discuss how multiparty session types (MPST) can be applied to implement the TCP
protocol. We develop an MPST-based implementation of a subset of a TCP server in Rust and test
its interoperability against the Linux TCP stack. Our results highlight the differences in assumptions
between session type theory and the way transport layer protocols are usually implemented. This
work is the first step towards bringing session types into the transport layer.

1 Introduction

Session types [11] are a typing discipline for icati Is. They can describe the sequence
of b d between ici over a ication channel and can be used to verify that
the protocol is implemented correctly or has certain desirable properties. Further, session types can be
realised within programming languages and used to type-check the implementation of a protocol against
a session type definition, with type errors indicating i i ies between impl ion and the
session type. Session types have been an active area of research since the beginning of the 1990s [11]
and have been implemented in a number of programming languages including C [26], Java [13] and Rust
[14, 15] and other programming languages [9, 16, 25, 27, 29].

Network protocols that are part of the Internet Protocol suite (TCP/IP) are the foundation of the
Internet. They are responsible for interoperability between different devices, operating systems, and
applications. To ensure that different implementations of the same protocol are compatible, they must
adhere to a technical specification which, in the case of Internet protocols, is defined in a series of
documents, known as RFCs [8], developed by the Internet Engineering Task Force (IETF). Specifically,
the latest version of the TCP protocol specification is defined in RFC 9293 [7].

The IETF follows a consensus-based process when developing standards [4, 30], with protocol
specifications being developed in working group meetings and on mailing lists over a multi-year period.
The resulting RFCs are written primarily in English prose, allowing the documents to be used in the

*Supported in part by the UK EPSRC grants EP/X027309/1 and EP/S036075/1.

D. Costa, R. Hu (Eds.): Programming Language Approaches to ©$. Cavoj, L. Nikitin, C. Perkins, O. Dardha
Concurrency and Communication-cEntric Software 2024 (PLACES'24) This work is licensed under the
EPTCS 401, 2024, pp. 22-36, doi:10.4204/EPTCS.401.3 Creative Commons Attribution License.

S. Cavoj, I. Nikitin, C. S. Perkins,

More Information

The definitive version was published in the

Conference, 021,

© IFIP, 2021. This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution.
of the 20th ional IFIP TC6 i ing 2

Espoo, Finland, June 21-24, 2021, http:/dLifip.

2021/1570702659.pdf.

Investigating Automatic Code Generation for
Network Packet Parsing

Stephen McQuistin Vivian Band
University of Glasgow, UK University of Glasgow, UK
istin.uk ivi 0@gmail.com

Abstract—Use of formal protocol description techniques and
code generation can reduce bugs in network packet parsing code.
However, such techniques are themselves complex, and don’t see
wide adoption in the protocol standards development community,
where the focus is on consensus building and human-readable
specifications. We explore the utility and effectiveness of new
techniques for describing protocol data, specifically designed to
integrate with the standards development process, and discuss
how they can be used to generate code that is safer and more
trustworthy, while maintaini and

1. INTRODUCTION

The code that parses incoming network packets is an import-
ant part of any protocol implementation, and problems with
this code are a frequent source of security vulnerabilities [1].
Unfortunately, as a result of ambiguous and inconsistent
protocol standards and specifications, typically written using
informal English prose, network packet parsing code often
contains logic errors and other bugs. In principle, standards
documents can be made more precise by using formal protocol
description techniques. This improved precision should make
it more likely that the ification is correctly i and

Dejice Jacob Colin Perkins
University of Glasgow, UK University of Glasgow, UK
dejice jacob@glasgow.ac.uk p ins.org

integrate with the standards development process, remove all
of the main classes of parser bugs [4]. Parsing code is made
insecure not just by ambiguous specifications, but also by the
design of the protocol itself, and by the architecture of the
code. Formal protocol description techniques can shape both
of these. The expressivity of the protocol data description
language determines the set of message formats that can be
described, while the code generator determines the architecture,
paradigm, and language of the parser code.

Accordingly, we consider the code generation functionality
of our Network Packet Representation [2], and highlight those
features of the representation that assist standards authors in
writing clear, unambiguous specifications that generate well-
formed code that is easy to reason about. We demonstrate the
specification of the TCP packet format, show how its Network
Packet Representation is derived and how code can then be
generated from this representation. We show how the generated
code can be integrated with an existing TCP implementation,
and demonstrate its correctness and performance.

implemented, and can also be used to enable automatic code
generation, further improving the quality of parsing code.

In practice, formal protocol description techniques have failed
to gain traction within the standards community. They often
require significant changes to the engineering process by which
standards are developed, and to the way specifications are
written. Such changes have proven too onerous for the standards
development community, and the vast majority of standards
published do not make use of formal techniques.

In previous work, we have proposed structured

An i ing number of ad-hoc, semi-structured, protocol
specification languages are seeing adoption within the standards
process [5], [6]. This shows willingness within the standards
community to experiment and improve their specifications.
However, while adoption of these languages will lead to
specifications that are more precisely written, precision on
its own is not sufficient [4]. Effective protocol description
languages must also limit expressiveness of the formats to
those that can be safely parsed. In this paper, we demonstrate
how the Network Packet Representation, in providing a common

techniques that do integrate with the standardisation process [2].
Such i include ificati that are struc-
tured to be familiar to those developing protocol standards, and
tooling that can be used to generate parser code directly from
standards documents. In this paper, we explore the effectiveness
of these techniques for specifying real-world protocols within
the Internet Engineering Task Force (IETF), one of the key
standards development organisations for network protocols,
by showing how they can be incorporated into the standard
protocol specification for TCP [3].

Formal protocol description iques and code

X, can influence protocol design, and
the i of d i i Both of these
have significant implications for the safety and trustworthiness
of the documents and generated code.

We structure the remainder of this paper as follows. In
Section II, we further describe the role of formal protocol
description i and ic code in
determining the overall safety and trustworthiness of packet
parsing code. Then, in Sections III, IV, and V, we step through
the i i ion, and code ion steps,
respectively, for a description of TCP using the Network Packet

generation do not, irrespective of whether they are easy to

ISBN 978-3-903176-39-3 © 2021 IFIP

In Section VI, we evaluate the generated code
in terms of correctness and performance. Finally, Section VII
describes the related work, and Section VIII concludes.

S. McQuistin, V. Band, D. Jacob,

Characterising the IETF Through the Lens of RFC Deployment

Stephen McQuistin Mladen Karan Prashant Khare
sm@smcquistin. uk m.karan@qmul . ac.uk p.khare@qmul . ac.uk
University of Glasgow Queen Mary University of London Queen Mary University of London
Colin Perkins Gareth Tyson Matthew Purver
csp@csperkins.org g.tyson@qmul.ac.uk m.purver@mul.ac.uk
University of Glasgow Queen Mary University of London ~ Queen Mary University of London
Patrick Healey Waleed Igbal Junaid Qadir
p.healey@gmul.ac.uk w.igbalegmul.ac.uk junaid.gadir@itu.edu.pk

Queen Mary University of London Queen Mary University of London Information Technology University

Ignacio Castro
i.castro@qmul.ac.uk
Queen Mary University of London

ABSTRACT

Protocol standards, defined by the Internet Engineering Task Force
(IETF), are crucial to the successful operation of the Internet. This
paper presents a large-scale empirical study of IETF activities, with
a focus on understanding collaborative activities, and how these
underpin the publication of standards documents (RFCs). Using a
unique dataset of 2.4 million emails, 8,711 RFCs and 4,512 authors,
we examine the shifts and trends within the standards development
process, showing how protocol complexity and time to produce
standards has increased. With these observations in mind, we de-
velop statistical models to understand the factors that lead to suc-
cessful uptake and deployment of protocols, deriving insights to
improve the standardisation process.

CCS CONCEPTS
« Social and i topics — User istics; « Net-
works — Network protocol design;

KEYWORDS
Protocol standardisation, IETF, Request for Comments

ACM Reference Format:

Stephen McQuistin, Mladen Karan, Prashant Khare, Colin Perkins, Gareth
‘Tyson, Matthew Purver, Patrick Healey, Waleed Igbal, Junaid Qadir, and Ig-
nacio Castro. 2021. Characterising the IETF Through the Lens of RFC
Deployment. In ACM Internet Measurement Conference (IMC '21), Novem-
ber 2-4, 2021, Virtual Event, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3487552. 3487821

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. P To copy , or republish,
o post on servers or tolists, requires prior sp sion and/or a
fee. Request permissions from permissions@acm.org.

IMC 21, November 2-4, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACMISBN 978-1-4503-9129-0/21/11...$15.00
https://doi.org/10.1145/3487552. 3487821

1 INTRODUCTION

Protocol standards are crucial to the successful operation of the
Internet. A successful standard provides a basis for interoperability
between systems developed by competing vendors, and supports the
growth of an open ecosystem of products and services. Further, the
process by which network protocol standards are developed, com-
prising multiple rounds of open feedback and review, has proven
remarkably effective in designing high-quality and robust protocols,
many of which see wi and use. (i
the Internet standards development process, and how it produces
successful protocols is, therefore, important if we are to understand
the Internet and how it has evolved.

One of the main organisations that develops protocol standards
is the Internet Engineering Task Force (IETF). The IETF was foun-
ded in 1986, following on from the US Government-funded effort
that developed the early Internet. It has since grown to become
a global community of network protocol designers, vendors, net-
work operators, and researchers that develop and publish open
network protocol standards and operational guidelines. The IETF
publishes its standards, and other documents, in the RFC series
(https://www.rfc-editor.org). This series comprises around
9,000 documents, authored over 50 years, and provides a rich history
of the development of the Internet and its protocols [9].

While the standardisation process, taken as a whole, has clearly
been successful, there are many RFCs that do not see widespread
deployment. Understanding the reasons for this is complex. The
success o failure of a protocol specified in a particular RFC may
depend on factors beyond its technical quality. Standardisation is
an inherently social and political process [5, 15], requiring cooper-
ation and consensus among a growing number of stakeholders. For
example, in 2020, IETF contributors submitted 7,547 draft docu-
ments, sent 118,537 emails to 335 mailing lists, participated in 3
plenary meetings, 256 interim meetings, and produced 309 RFCs.
However, while the process has evolved and scaled, it has also
slowed, with each RFC taking on average 1,170 days from its first
draft to publication in 2020, an increase from 469 days in 2001.

S. McQuistin, M. Karan, P. Khare, C. S.

University of

%y St Andrews

Q_g’ Queen Mary

University of London

Engineering and
Physical Sciences
Research Council

Work is supported by EPSRC grants
EP/X027309/1, EP/R04144X/1,

and O. Dardha, “Session Types for
the Transport Layer: Towards an
Implementation of TCP”, PLACES,
2024. DOI:10.4204/EPTCS.401.3

and C. S. Perkins, “Investigating
Automatic Code Generation for
Network Packet Parsing”, IFIP
Networking 2021. DOI: 10.23919/
IFIPNetworking52078.2021.9472829

Perkins, G. Tyson, M. Purver, P. Healey,
W. Igbal, J. Qadir, and I. Castro,
“Characterising the IETF Through the
Lens of RFC Deployment”, ACM IMC
2021. DOI: 10.1145/3487552.3487821

EP/S036075/1, EP/S033564/1, and
DTA studentships

@ @ @ Colin Perkins | https://csperkins.org/ | Copyright © 2024 University of Glasgow

http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://csperkins.org/

