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Collaborative Machine Learning

» Collaborative machine learning (CML)
technigues were proposed to -
collaboratively train deep learning models ¥

using multiple devices and a server. '
« CML techniques preserve the privacy of e \ ﬁ /

end-users as it does not require user '

data to be transferred to the server. =
Three popular techniques: \\‘ \ D
« Federated Learning =l —

« Split Learning
« Split Federated Learning
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Federated Learning (FL)
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Federated Learning (FL)
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Federated Learning (FL)
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Federated Learning (FL)
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Federated Learning (FL)
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Split Learning (SL)
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Split Learning (SL)
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Split Learning (SL)
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Split Learning (SL)
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Split Learning (SL)
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Split Learning (SL)
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Split Federated Learning (SFL)

Main Server .
— A hybrid of FL and SL.
. » Problem:
The server Is required to walit
PR . . while the devices train the
model and transfer data, and
vice versa.
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Split Federated Learning (SFL)
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Split Federated Learning (SFL)
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Resources Under-Utilisation Challenges

1. Device and server computations in CML occur in seguence -
causes long idle times on both side waiting for the other.

2. Data transfer in CML technigues is time consuming - no
training occurs during this time.
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PipelLearn
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cS)fp(I:;;teaath Sne]{?el;,g?mh (a) Split Federated Learning
micro-batches.
. . . SErVEr-STAE COMIP. - - = = = == == s s s e e et
- Parallelise device-side "
computation, server- e
Slde Computatlon and DO ORI s e e e e e
communication. T
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training in parallel. _ o | | .
Figure 1. Atraining iteration for split federated learning and PipeLearn,

where f, b, u and d represent forward pass, backward pass, upload and
download, respectively.
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PipelLearn
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PipelLearn
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PipelLearn
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PipelLearn
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PipelLearn
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PipelLearn
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PipelLearn
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PipelLearn
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Experiment: Training Efficiency
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Figure 2. Training time per epoch for FL, SFL and PipeLearn under different network conditions.
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Experiment: Idle Time
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Figure 3. Idle time per epoch on the server and devices in FL, SFL and PipeLearn under different
network conditions.

& University of

www.st-andrews.ac.uk @ St Andrews




Experiment: Model Accuracy

Model Technique Test Accuracy
FL 79.95
SFL 79.55
VGGS PipeLearn under 4G 79.15
PipeLearn under 4G+ 78.4
PipeLearn under WiFi 78.65
FL 80.4
SFL 81.55
ResNet18 PipeLearn under 4G 79.5
PipeLearn under 4G+ 81.35
PipeLearn under WiFi 80.2

Table 1. Model accuracy of VGG5 and ResNetl8 on the test dataset using FL, SFL and PipeLearn,
under different network conditions.
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Conclusion

Compared to federated learning:

* PipeLearn accelerates the training process by up to 21.6x.
* PipeLearn reduces idle time by up to 28.5x.
* PipeLearn achieves (near) similar model accuracy.

Z. Zhang, P. Rodgers, P. Kilpatrick, |. Spence and B. Varghese, "PipelLearn: Pipeline Parallelism for
Collaborative Machine Learning," IEEE Transactions on Parallel and Distributed Systems, 2022
[Under Revision].
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