

PipeLearn: Pipeline Parallelism for Collaborative Machine Learning

Zihan Zhang zz66@st-Andrews.ac.uk

Contents

- Collaborative Machine Learning
 - Federated Learning
 - Split Learning
 - Split Federated Learning
- Challenges for Efficient Resource Utilisation
- PipeLearn
- Experimental Results
- Conclusion

Collaborative Machine Learning

- Collaborative machine learning (CML) techniques were proposed to collaboratively train deep learning models using multiple devices and a server.
- CML techniques preserve the privacy of end-users as it does not require user data to be transferred to the server.

Three popular techniques:

- Federated Learning
- Split Learning
- Split Federated Learning

Server

• Problem:

The server resources are only employed when the local models are aggregated and remains idle for the remaining time.

Server

• Problem:

The server resources are only employed when the local models are aggregated and remains idle for the remaining time.

• Problem:

The server resources are only employed when the local models are aggregated and remains idle for the remaining time.

• Problem:

The server resources are only employed when the local models are aggregated and remains idle for the remaining time.

• Problem:

The server resources are only employed when the local models are aggregated and remains idle for the remaining time.

• Problem:

Only one device or the server will utilise its resources while the other devices or server are idle.

• Problem:

Only one device or the server will utilise its resources while the other devices or server are idle.

• Problem:

Only one device or the server will utilise its resources while the other devices or server are idle.

• Problem:

Only one device or the server will utilise its resources while the other devices or server are idle.

• Problem:

Only one device or the server will utilise its resources while the other devices or server are idle.

Send model to next client

• Problem:

Only one device or the server will utilise its resources while the other devices or server are idle.

Split Federated Learning (SFL)

Main Server

()	$\left(\right)$	$\left(\right)$
<i>M</i> ^c ₁	M ^{c2}	M ^c _K
Device 1	Device 2	Device K

A hybrid of FL and SL.

• Problem:

The server is required to wait while the devices train the model and transfer data, and vice versa.

Split Federated Learning (SFL)

A hybrid of FL and SL.

• Problem:

The server is required to wait while the devices train the model and transfer data, and vice versa.

Split Federated Learning (SFL)

A hybrid of FL and SL.

• Problem:

The server is required to wait while the devices train the model and transfer data, and vice versa.

Resources Under-Utilisation Challenges

- 1. Device and server computations in CML occur in sequence causes long idle times on both side waiting for the other.
- 2. Data transfer in CML techniques is time consuming no training occurs during this time.

- Split the model across server and devices.
- Split each mini-batch of data to several micro-batches.
- Parallelise device-side computation, serverside computation and communication.
- All devices are training in parallel.

Server-Side Co	omp	
Uploa	ding	
Download	ding	
Device-Side Co	mp	
	(a) Split Federated Learning	
Server-Side Cor	np.····	•
Upload	ing	

Uploading	 	••••••	 	
Downloading	 	•••••	 	

Device-Side Comp.

(b) PipeLearn

- Split the model across server and devices.
- Split each mini-batch of data to several micro-batches.
- Parallelise device-side computation, server-side computation and communication.
- All devices are training in parallel.

Server-Side Comp		
Uploading	•••••	·····
Downloading	•••••	
Device-Side Comp.	f¢	⇒
		(a) Split Federated Learning

Server-Side Comp.
Uploading
Downloading
Device-Side Comp.

(b) PipeLearn

- Split the model across server and devices.
- Split each mini-batch of data to several micro-batches.
- Parallelise device-side computation, serverside computation and communication.
- All devices are training in parallel.

Server-Side Comp.
Uploading
Downloading
Device-Side Comp

(b) PipeLearn

- Split the model across server and devices.
- Split each mini-batch of data to several micro-batches.
- Parallelise device-side computation, server-side computation and communication.
- All devices are training in parallel.

Server-Side Comp	u
Uploading	
Downloading	
Device-Side Comp.	→
	(a) Split Federated Learning

Server-Side Comp.
Uploading
Downloading
Device-Side Comp

(b) PipeLearn

- Split the model across server and devices.
- Split each mini-batch of data to several micro-batches.
- Parallelise device-side computation, server-side computation and communication.
- All devices are training in parallel.

Server-Side Comp.
Uploading
Downloading
Device-Side Comp

(b) PipeLearn

- Split the model across server and devices.
- Split each mini-batch of data to several micro-batches.
- Parallelise device-side computation, serverside computation and communication.
- All devices are training in parallel.

Server-Side Comp.
Uploading
Downloading
Device-Side Comp

(b) PipeLearn

- Split the model across server and devices.
- Split each mini-batch of data to several micro-batches.
- Parallelise device-side computation, serverside computation and communication.
- All devices are training in parallel.

Server-Side Comp.
Uploading
Downloading
Device-Side Comp

(b) PipeLearn

- Split the model across server and devices.
- Split each mini-batch of data to several micro-batches.
- Parallelise device-side computation, server-side computation and communication.
- All devices are training in parallel.

Server-Side Comp.
Uploading
Downloading
Device-Side Comp. f_1^c
(b) PipeLearn

Figure 1. A training iteration for split federated learning and PipeLearn, where f, b, u and d represent forward pass, backward pass, upload and download, respectively.

- Split the model across server and devices.
- Split each mini-batch of data to several micro-batches.
- Parallelise device-side computation, serverside computation and communication.
- All devices are training in parallel.

(b) PipeLearn

Figure 1. A training iteration for split federated learning and PipeLearn, where f, b, u and d represent forward pass, backward pass, upload and download, respectively.

- Split the model across server and devices.
- Split each mini-batch of data to several micro-batches.
- Parallelise device-side computation, serverside computation and communication.
- All devices are training in parallel.

Figure 1. A training iteration for split federated learning and PipeLearn, where f, b, u and d represent forward pass, backward pass, upload and download, respectively.

- Split the model across server and devices.
- Split each mini-batch of data to several micro-batches.
- Parallelise device-side computation, serverside computation and communication.
- All devices are training in parallel.

Figure 1. A training iteration for split federated learning and PipeLearn, where f, b, u and d represent forward pass, backward pass, upload and download, respectively.

- Split the model across server and devices.
- Split each mini-batch of data to several micro-batches.
- Parallelise device-side computation, serverside computation and communication.
- All devices are training in parallel.

Figure 1. A training iteration for split federated learning and PipeLearn, where f, b, u and d represent forward pass, backward pass, upload and download, respectively.

- Split the model across server and devices.
- Split each mini-batch of data to several micro-batches.
- Parallelise device-side computation, serverside computation and communication.
- All devices are training in parallel.

Figure 1. A training iteration for split federated learning and PipeLearn, where f, b, u and d represent forward pass, backward pass, upload and download, respectively.

- Split the model across server and devices.
- Split each mini-batch of data to several micro-batches.
- Parallelise device-side computation, serverside computation and communication.
- All devices are training in parallel.

Figure 1. A training iteration for split federated learning and PipeLearn, where f, b, u and d represent forward pass, backward pass, upload and download, respectively.

Experiment: Training Efficiency

Figure 2. Training time per epoch for FL, SFL and PipeLearn under different network conditions.

Experiment: Idle Time

Figure 3. Idle time per epoch on the server and devices in FL, SFL and PipeLearn under different network conditions.

Experiment: Model Accuracy

Model	Technique	Test Accuracy
VGG5	FL	79.95
	SFL	79.55
	PipeLearn under 4G	79.15
	PipeLearn under 4G+	78.4
	PipeLearn under WiFi	78.65
ResNet18	FL	80.4
	SFL	81.55
	PipeLearn under 4G	79.5
	PipeLearn under 4G+	81.35
	PipeLearn under WiFi	80.2

Table 1. Model accuracy of VGG5 and ResNet18 on the test dataset using FL, SFL and PipeLearn, under different network conditions.

Conclusion

Compared to federated learning:

- PipeLearn accelerates the training process by up to 21.6x.
- PipeLearn reduces idle time by up to 28.5x.
- PipeLearn achieves (near) similar model accuracy.

Z. Zhang, P. Rodgers, P. Kilpatrick, I. Spence and B. Varghese, "PipeLearn: Pipeline Parallelism for Collaborative Machine Learning," IEEE Transactions on Parallel and Distributed Systems, 2022 [Under Revision].

University of St Andrews