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Collaborative Machine Learning

• Collaborative machine learning (CML) 
techniques were proposed to 
collaboratively train deep learning models 
using multiple devices and a server. 

• CML techniques preserve the privacy of 
end-users as it does not require user 
data to be transferred to the server. 

Three popular techniques:

• Federated Learning

• Split Learning

• Split Federated Learning



Federated Learning (FL)

• Problem:

The server resources are only 
employed when the local 
models are aggregated and 
remains idle for the remaining 
time.



Federated Learning (FL)

• Problem:

The server resources are only 
employed when the local 
models are aggregated and 
remains idle for the remaining 
time.



Federated Learning (FL)

• Problem:

The server resources are only 
employed when the local 
models are aggregated and 
remains idle for the remaining 
time.



Federated Learning (FL)

• Problem:

The server resources are only 
employed when the local 
models are aggregated and 
remains idle for the remaining 
time.



Federated Learning (FL)

• Problem:

The server resources are only 
employed when the local 
models are aggregated and 
remains idle for the remaining 
time.



Split Learning (SL)

• Problem:

Only one device or the server 
will utilise its resources while 
the other devices or server are 
idle.



Split Learning (SL)

• Problem:

Only one device or the server 
will utilise its resources while 
the other devices or server are 
idle.



Split Learning (SL)

• Problem:

Only one device or the server 
will utilise its resources while 
the other devices or server are 
idle.



Split Learning (SL)

• Problem:

Only one device or the server 
will utilise its resources while 
the other devices or server are 
idle.



Split Learning (SL)

• Problem:

Only one device or the server 
will utilise its resources while 
the other devices or server are 
idle.



Split Learning (SL)

• Problem:

Only one device or the server 
will utilise its resources while 
the other devices or server are 
idle.



Split Federated Learning (SFL)

A hybrid of FL and SL.

• Problem:

The server is required to wait 
while the devices train the 
model and transfer data, and 
vice versa.



Split Federated Learning (SFL)

A hybrid of FL and SL.

• Problem:

The server is required to wait 
while the devices train the 
model and transfer data, and 
vice versa.



Split Federated Learning (SFL)

A hybrid of FL and SL.

• Problem:

The server is required to wait 
while the devices train the 
model and transfer data, and 
vice versa.



Resources Under-Utilisation Challenges

1. Device and server computations in CML occur in sequence -
causes long idle times on both side waiting for the other.

2. Data transfer in CML techniques is time consuming - no 
training occurs during this time.



PipeLearn

• Split the model across 
server and devices.

• Split each mini-batch 
of data to several 
micro-batches.

• Parallelise device-side 
computation, server-
side computation and 
communication.

• All devices are 
training in parallel.

(a) Split Federated Learning

(b) PipeLearn

Figure 1. A training iteration for split federated learning and PipeLearn, 

where f, b, u and d represent forward pass, backward pass, upload and 

download, respectively.
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Experiment: Training Efficiency

(a) VGG5 (a) ResNet18

Figure 2. Training time per epoch for FL, SFL and PipeLearn under different network conditions.



Experiment: Idle Time

(a) VGG5 (a) ResNet18

Figure 3. Idle time per epoch on the server and devices in FL, SFL and PipeLearn under different 

network conditions.



Experiment: Model Accuracy

Table 1. Model accuracy of VGG5 and ResNet18 on the test dataset using FL, SFL and PipeLearn, 

under different network conditions.



Conclusion

Compared to federated learning:

• PipeLearn accelerates the training process by up to 21.6x.

• PipeLearn reduces idle time by up to 28.5x. 

• PipeLearn achieves (near) similar model accuracy.

Z. Zhang, P. Rodgers, P. Kilpatrick, I. Spence and B. Varghese, "PipeLearn: Pipeline Parallelism for 

Collaborative Machine Learning," IEEE Transactions on Parallel and Distributed Systems, 2022 

[Under Revision]. 
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