Supporting Evolution, Experimentation, and Adaptation
with Parseable Standards Documents

Stephen McQuistin

Scottish Autonomous Networked Systems (SANS) Workshop
12th—13th December 2022

Autonomous Networks

Autonomous Networks

Adaptation

Application Application Application Application Application

Experimentation

Responding to changes in

AUtOnOmOUS Netwo rks the environment to maintain

service

Adaptation

Application Application Application Application Application

Improving over time as new
applications and use cases
emerge

Trying new approaches to
Experimentation improve performance and
other metrics

Responding to changes in

AUtOnOmOUS NetWOrkS the environment to maintain

service

! Adaptation

Improving over time as
applications and use ca
emerge

Trying new approaches to
Experimentation improve performance and
other metrics

Autonomous Networks

Controller Controller

aue|d |0/

aue|d ereq

TCP UDP RTP QUIC WebRTC

Protocol standardisation takes time

o
o

draft-hamilton-quic-transport-protocol

01

141116 17181920 22 2324 227 229 332334

02 €04 0£CO7 08 010 111

00

T a
m. >
% 9
cC c
T a
50
‘m Om
- -
g 9
=
Oﬁ 0*
s =
14} 1}
- -
T O

rfc9000

Protocol standardisation takes time

draft-hamilton-quic-transport-protocol

draft-ietf-quic-transport

draft-ietf-quic-spin-exp

rfc9000

10

... and produce standards that look like this

Internet Engineering Task Force W. Eddy, Ed.
Internet-Draft MTI Systems
Obsoletes: 793, 879, 2873, 6093, 6429, October 27, 2020

6528, 6691 (if approved)
Updates: 5961, 1122 (if approved)
Intended status: Standards Track
Expires: April 30, 2021

Transmission Control Protocol (TCP) Specification
draft-ietf-tcpm-rfc793bis-19

Abstract

This document specifies the Transmission Control Protocol (TCP). TCP
is an important transport layer protocol in the Internet protocol
stack, and has continuously evolved over decades of use and growth of
the Internet. Over this time, a number of changes have been made to
TCP as it was specified in RFC 793, though these have only been
documented in a piecemeal fashion. This document collects and brings
those changes together with the protocol specification from RFC 793.
This document obsoletes RFC 793, as well as RFCs 879, 2873, 6093,
6429, 6528, and 6691 that updated parts of RFC 793. It updates RFC
1122, and should be considered as a replacement for the portions of
that document dealing with TCP requirements. It also updates RFC
5961 by adding a small clarification in reset handling while in the
SYN-RECEIVED state. The TCP header control bits from RFC 793 have
also been updated based on RFC 3168.

RFC EDITOR NOTE: If approved for publication as an RFC, this should
be marked additionally as "STD: 7" and replace RFC 793 in that role.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are workinag documents of the Internet Enagineerindg

... and produc

B

Internet-Draft TCP Specification

0 1

October 2020

2 3

0123 4567890123456 7890123456789 01
tmtmtmtetetetetetatatatatatetetetetetatatatatatatatatatatatatatat

Source Port |

Rsrvd |W|C|R|C|S|S|Y]|I

+
Data | |IC|E|U|A|P|R|S|F
I
I IRIE|G|K[H|T|N|N

Checksum

Options

Data

tmtmtetetetatatatatetetatatetetetatatat

tmtmtetmtetatetatatatatat et et et et et et it

tmtmtetatatatatatatatatatatatatatatatad

tmtmtmtetetetetetatatatatatatatatatatadt

Destination Port

toteteta
Sequence Number
tetetetetateta
Acknowledgment Number
cteteteta

Window

ctetatatatatatatatatata
Urgent Pointer
ctetatetatatatatatatata
| Padding
ctetatatatatatatatatata

e -

Note that one tick mark represents one bit position.

Figure 1: TCP Header Format

Each of the TCP header fields 1s described as follows:

Source Port: 16 bits
The source port number.
Destination Port: 16 bits
The destination port number.
Sequence Number: 32 bits

The sequence number of the first data

ISN+1.

Acknowledgment Number: 32 bits

+

+

+

+

+

+

+

-t

-+

-

-+

-

-t

-+

octet in this segment (except
when the SYN flag is set). If SYN is set the sequence number is
the initial sequence number (ISN) and the first data octet is

If the ACK control bit is set, this field contains the value of the
next sequence number the sender of the segment is expecting to
receive. Once a connection is established, this is always sent.

Data Offset: 4 bits

h

IS

-

Internet-Draft TCP Specification October 2020
0 1 2 3
0123456789012 34567890123456789°01

totetotetat
Source Port | Destination Port

totmtatd I -

IS

|
and produd Segoenes Yoo
C toteateateatatatatetdat [

Acknowledgment Number
tototetat ottt
Data C|lE|U|a|P|R|S|F
Offset| Rsrvd |W|C|R|C|S|s|Y]|I Window
| R|E|G|K|H|T|N|N
totototat
Checksum Urgent Pointer
tototetat ottt
Options | Padding
tetotetat
Data
totototat

Note that one tick mark represents one bit position.
Figure 1l: TCP Header Format
Each of the TCP header fields is described as follows:
Source Port: 16 bits
The source port number.
Destination Port: 16 bits
The destination port number.

Sequence Number: 32 bits

The sequence number of the first data octet
when the SYN flag is set). If SYN is set t
the initial sequence number (ISN) and the f
ISN+1.

Acknowledgment Number: 32 bits
If the ACK control bit is set, this field c
next sequence number the sender of the segm

receive. Once a connection is established, this is always sent.

Data Offset: 4 bits

Internet-Draft TCP Specification October 2020
0 1 2 3
012 3 456789012 3456789012 345¢6789°01
betmtetetetetatetatateteteteateatetateteateteatatetatetetatatatatetdad
| Source Port | Destination Port

twtmtwtwtwtatawtat et -t -

I
a n d I O d u ‘ | Sequence Number I s
H EH N et et et et etatatatetetetatetatatetatetetatatateatatetatatatatatatat |

| Acknowledgment Number
bttt wtwtetatawtat ot ot ot et
| Data IC|IE|U|A|P|R|S|F
Offset srvd |[W|/C|R|C|S|S|Y|I Window
IR|IE|G|K|H|T|N|N

|

|
twtmtwtwtawtatwtat
|

P -

Checksum Urgent Pointer

bttt wtwtawtwtat

The destination port number.
Sequence Number: 32 bits

The sequence number of the first data octet
when the SYN flag is set). If SYN is set t

Egg’i:}iti=; sequence number (ISN) and the f Implementation, debugging, and
Acknowledgment Number: 32 bits deployment take time too

If the ACK control bit i1s set, this field c
next sequence number the sender of the segme.
receive. Once a connection 1s established, this is always sent.

Data Offset: 4 bits

Parseable Protocol Standards

Network Working Group

S. McQuistin
Internet-Draft v. Band
Intended status: Experimental D. Jacob
Expires: 19 December 2020 . Perkins

University of Glasgow
17 June 2020

d.
Networl Describing QUIC’s Protocol Data Units with Augmented Packet Header ¥
Diagrams e.
STD: 68 d isti i di 01 08
obsolete
category Abstract
This document describes the core transport protocol data units used
in the QUIC protocol using a machine-readable augmented packet header
diagram format. It is intended as an e: £ the packet header
status o diagram language, and not as a contribution to the development of the |
QUIC protocol.
This
Integ Status of This Memo 1
impro
ortig This in full with the
provisions of BCP 78 and BCP 79.
Abstract . .
are working of the Internet Engineering
Inted Task Force (IETF). Note that other groups may also distribute
Synta working documents as Internet-Drafts. The list of current Internet-
BNE Drafts is at https://datatracker.ietf.org/drafts/current/.
(BNF)
Inter
ba Internet-Drafts are draft documents valid for a maximum of six months
repre and may be updated, laced, or by other at any !
AN time. It is i to use
indep material or to cite them other than as "work in progress."
addit
of th This Internet-Draft will expire on 19 December 2020.
Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.
McQuistin, et al. Expires 19 December 2020 [Page 1]
1]
Crocker

THE

PROGRAMMING
LANGUAGE
C’)

(i

Java

Parseable Protocol Standards

- Enables automatic code generation,
allowing for rapid testing and deployment

nnnnnnn

xxxxxx
aaaaaa

- Provides rich metadata about the protocol:
parameters and fields that can be tweaked,
for example e

- This in turn enables evolution, adaptation,
and experimentation in the network

Publications

Parsing Protocol Standards to Parse Standard
Protocols

Stephen McQuistin
University of Glasgow
sm@smcquistin.uk

Dejice Jacob
University of Glasgow
d jacob.1@research.gla.ac.uk

ABSTRACT

Internet protocol standards have been slow to adopt formal
protocol description languages and methodologies, and are
still largely written as English prose. This makes it hard
to check them for correctness, or to automatically derive
implementations from standards. Reasons for this are both
technical and social. Some methodologies effectively describe
complex communication patterns, but cannot model protocol
data. Others are tied to particular

formats, or use unf: concepts and and

Vivian Band
University of Glasgow
vivianband0@gmail com

Colin Perkins
University of Glasgow
csp@csperkins.org

2020, Online (Meetecho), Spain. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3404868 3406671

1 INTRODUCTION

The process by which Internet protocols are standardised is
largely centred around documents written in English prose.
To some extent, this is desirable: prose documents are useful
for ing ideas, facilitating discussion, and building
consensus. However, as protocols become more complex, the

don’t address usability by standards developers.

We assess the viability of existing approaches to model-
ling and parsing protocol data, and identify missing features
needed to represent emerging protocols. We present a typed
protocol representation that can describe: (i) the format of
protocol data, including data-dependent formats; (ii) con-
textual information needed to maintain parser state, where
correct parsing may depend on out-of-band information or
prior packets; and (iii) transformations and helper functions
needed for multi-stage parsing. We discuss social barriers to
adoption, and describe a set of principles to encourage use
of formal languages within the Internet standards process.
‘We show how to integrate our approach with the existing
standards process, using QUIC as an example.

CCS CONCEPTS

« Networks — Protocol correctness; « Software and its
engineering — Domain specific languages.

ACM Reference Format:
Stephen McQuistin, Vivian Band, Dejice Jacob, and Colin Perkins.
2020. Parsing Protocol Standards to Parse Standard Protocols. In
Applied Networking Research Workshop (ANRW '20), July 27-30,

ANRW '20, July 27-30, 2020, Online (Meetecho), Spain
© 2020 Association for Computing Machinery.

“This s the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Applied Networking Research Workshop (ANRW 20), July 27-30, 2020,
Online (Meetecho), Spain, https://doi.org/10.1145/3404868 3406671

of this approach become clear. Inconsistencies
and ambiguities are easily introduced into the standards,
‘making it difficult to develop implementations that conform
to the specification. Use of formal ion languages
would make the standards documents more machine read-
able. This would make them easier to test, and would help to
support, for example, automatic generation of packet parser
code from the specification. Use of such formalisms is, how-
ever, not common in Internet protocol standards.

There are technical and non-technical reasons for the slow
adoption of formal description techniques by the Internet
standards community. Technical limitations include protocol
description languages that cannot fully describe the syntax of
‘modern protocols. of current formal
include formalisms that effectively model abstract commu-
nication patterns, but cannot describe the protocol data being
exchanged. On the non-technical side, models may tightly
integrate with unfamiliar protocol description languages or
assume familiarity with concepts that are not widely known
outside the formal modelling community. Moreover, adop-
tion of new techniques requires engineers developing pro-
tocol standards to learn new skills for seemingly uncertain
future benefits, and to overcome organisational inertia.

If the Internet standards development community is to
adopt formal protocol description and modelling techniques,
to help ensure correctness of its protocol specifications, then
those techniques will need to be usable within the existing
standards development process, and will need to be usable by
existing standards developers. In this paper, we consider one
part of this problem: how to describe protocol data, and how

© IFIP, 2021. This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution.
IFIP TC6 202

The definitive version was published in the of the 20th

Espoo, Finland, June 21-24, 2021, http://dLifip.

g Conference, 1,
2021/1570702659.pdf.

Investigating Automatic Code Generation for
Network Packet Parsing

Stephen McQuistin Vivian Band
University of Glasgow, UK University of Glasgow, UK
s uk com

Dejice Jacob Colin Perkins
University of Glasgow, UK University of Glasgow, UK

dejicy ac.uk rg

Abstract—Use of formal protocol description techniques and
code generation can reduce bugs in network packet parsing code.
However, such techniques are themselves complex, and don’t see
wide adoption in the protocol standards development community,
‘where the focus is on consensus building and human-readable
specifications. We explore the utility and effectiveness of new
techniques for describing protocol data, specifically designed to
integrate with the standards development process, and discuss
how they can be used to generate code that is safer and more
while maintaining correctness and

1. INTRODUCTION

The code that parses incoming network packets is an import-
ant part of any protocol implementation, and problems with
this code are a frequent source of security vulnerabilities [1].
Unfortunately, as a result of ambiguous and inconsistent
protocol standards and specifications, typically written using
informal English prose, network packet parsing code often
contains logic errors and other bugs. In principle, standards
documents can be made more precise by using formal protocol
description techniques. This improved precision should make
it more likely that the specification is correctly interpreted and
implemented, and can also be used to enable automatic code
generation, further improving the quality of parsing code.

In practice, formal protocol description techniques have failed
to gain traction within the standards community. They often
require significant changes to the engineering process by which
standards are developed, and to the way specifications are
written. Such changes have proven too onerous for the standards
development community, and the vast majority of standards
published do not make use of formal techniques.

In previous work, we have proposed structured specification
techniques that do integrate with the standardisation process [2].
Such techniques include specification languages that are struc-
tured to be familiar to those developing protocol standards, and
tooling that can be used to generate parser code directly from
standards documents. In this paper, we explore the effectiveness
of these techniques for specifying real-world protocols within
the Internet Engineering Task Force (IETF), one of the key
standards development organisations for network protocols,
by showing how they can be incorporated into the standard
protocol specification for TCP [3].

Formal protocol description techniques and automated code
generation do not, irrespective of whether they are casy to

ISBN 978-3-903176-39-3 © 2021 IFIP

sp

integrate with the standards development process, remove all
of the main classes of parser bugs [4]. Parsing code is made
insecure not just by ambiguous specifications, but also by the
design of the protocol itself, and by the architecture of the
code. Formal protocol description techniques can shape both
of these. The expressivity of the protocol data description
language determines the set of message formats that can be
described, while the code generator determines the architecture,
paradigm, and language of the parser code.

Accordingly, we consider the code generation functionality
of our Network Packet Representation [2], and highlight those
features of the representation that assist standards authors in
writing clear, unambiguous specifications that generate well-
formed code that is easy to reason about. We demonstrate the
specification of the TCP packet format, show how its Network
Packet Representation is derived and how code can then be
generated from this representation. We show how the generated
code can be integrated with an existing TCP implementation,
and demonstrate its correctness and performance.

An increasing number of ad-hoc, semi-structured, protocol
specification languages are seeing adoption within the standards
process [5], [6]. This shows willingness within the standards
community to experiment and improve their specifications.
However, while adoption of these languages will lead to
specifications that are more precisely written, precision on
its own is not sufficient [4]. Effective protocol description
languages must also limit expressiveness of the formats to
those that can be safely parsed. In this paper, we demonstrate
how the Network Packet Representation, in providing a common
representation framework, can influence protocol design, and
the i of generated i i Both of these
have significant implications for the safety and trustworthiness
of the documents and generated code.

We structure the remainder of this paper as follows. In
Section 11, we further describe the role of formal protocol
description techniques and automatic code generators in
determining the overall safety and trustworthiness of packet
parsing code. Then, in Sections IIL, IV, and V, we step through
the ificati ion, and code ion steps.
respectively, for a description of TCP using the Network Packet
Representation. In Section VI, we evaluate the generated code
in terms of correctness and performance. Finally, Section VII
describes the related work, and Section VIII concludes.

Parsing Protocol Standards to Parse Standard Protocols
Stephen McQuistin, Vivian Band, Dejice Jacob, and Colin Perkins
ACM/IRTF Applied Networking Research Workshop, July 2020.
https://doi.org/10.1145/3404868.340667 1

Investigating Automatic Code Generation for Network Packet Parsing
Stephen McQuistin, Vivian Band, Dejice Jacob, and Colin Perkins

IFIP Networking Conference, June 2021.
http://dl.ifip.org/db/conf/networking/networking2021/1570702659.pdf

http://dl.ifip.org/db/conf/networking/networking2021/1570702659.pdf
https://doi.org/10.1145/3404868.3406671

Augmented Packet Header Diagrams

Regularised the format of packet header
diagrams with minimal change, easing
adoption

Prototype parser code that takes an RFC
and generates Rust code for the protocol
that is specified

Generated code is correct and performant

Adopted in the recent update to the TCP
RFC

—&— ([LVILQJ SDUVHU
*HQHUDIHG SDUVHU

TKURXJIKSXI *<ESV

O78 VL]H ENIRV

Summary

Autonomous networks require rapid
deployment and reconfigurability

5. Meguistin

This can seem at odds with the protocol
standardisation process, which often takes
years, and produces documents that —
require manual implementation and

deployment

Machine parseable standards documents
would enable evolution, adaptation, and
experimentation

19

