A Unuversity
W of Glasgow

Call me from Anywhere

Remote Procedure Calling meets
Named Data Networking

Jeremy.Singer@glasgow.ac.uk

mailto:Jeremy.Singer@glasgow.ac.uk

what is a remote procedure call?

Free On-Line Dictionary Of Computing

<networking, programming>

(RPC) A protocol which allows a program running
on one host to cause code to be executed on
another host without the programmer needing to
explicitly code for this.

Java RMI example

import java.rmi.Naming;

public class RmiClient {
public static void main(String args[]) throws Exception {
RmiServerIntf server = (RmiServerIntf)Naming. lookup("//localhost
/RmiServer");
System.out.println(server.getMessage());

}

RESTful web service example

response = requests.get (

'https://samoa.dcs.gla.ac.uk/events/rest/Event/recentlychanged’

)

Summary of state-of-the-art RPC

*specify endpoint

*specify function

*package up parameters and send

*wait for result

*unpackage result and continue execution

What is NDN?

*refer to data by name, rather than location
*data sinks request data with interest packets
e data sources respond with data packets

alternative definition

the internet becomes a gigantic
distributed key/value store

How can we layer RPC over NDN?

* just specify function name - no need for endpoint

* add params (package as part of function call) and make NDN
request

* remote key lookup

* value found ... function is invoked (somewhere?)

* result returned to caller

 potential caching of pure function invocation results

In Python?

* a dynamic language - so no need for types of params or return value
* although mypy does allow types, which could be helpful

 possible calling models
 direct - any name not known locally could be looked up remotely

e via a specific NDN binding - a library that does the lookup for us (more
intentional)

Hang on, should we
Invoke arbitrary
remote code?

invoking arbitrary remote code

possible mitigations ...

e code signing - NDN can do some of this security for us?
* types of params / returns, maybe with asserts?
* static guarantees - e.g. like Dafny

* dynamic testing - e.g. like QuickCheck
* code sandboxing
* redundancy with N-versioning

NFaaS: Named Function as a Service

Michat Krol Ioannis Psaras
University College London University College London
m.krol@ucl.ac.uk i.psaras@ucl.ac.uk

ABSTRACT

In the past, the Information-centric networking (ICN) community

has focused on issues mainly pertaining tq
livery (e.g., routing and forwarding scalabj
and in-network caching). However, to keep
architectural trends the wider area of fut
there is a pressing need to support edge/f
ments, where cloud functionality is availg
where the data is generated and needs pro

With this goal in mind, we propose Nan
(NFaaS), a framework that extends the N3
architecture to support in-network functio
to existing works, NFaaSbuilds on very ligh
for dynamic execution of custom code. F
loaded and run by any node in the netwo}
between nodes according to user demang
moving functions a first-class challenge.]
Store component, which is responsible no
tions, but also for making decisions on ¥
locally. NFaaSincludes a routing protocol af

1 1 1 1 e 11

functionality to be incorporated. Powerful end-user devices and
new applications (e.g., augmented reality [1]) demand minimum

RICE: Remote Method Invocation in ICN

Michat Kroél Karim Habak David Oran
UCL Georgia Tech Network Systems Research & Design
m.krol@ucl.ac.uk karim.habak@gatech.edu daveoran@orandom.net
Dirk Kutscher Ioannis Psaras
Huawei UCL

dirk kutscher@huawei.com

ABSTRACT

Information Centric Networking has been proposed as a new net-
work layer for the Internet, capable of encompassing the full range
of networking facilities provided by the current IP architecture. In
addition to the obvious content-fetching use cases which have been
the subject of a large body of work, ICN has also shown promise as
a substrate to effectively support remote computation, both pure
functional programming (as exemplified by Named Function Net-
working) and more general remote invocation models such as RPC
and web transactions. Providing a unified remote computation ca-
pability in ICN presents some unique challenges, among which
are timer management, client authorization, and binding to state
held by servers, while maintaining the advantages of ICN proto-

i.psaras@ucl.ac.uk

1 INTRODUCTION

Much of today’s network traffic consists of data sent for processing
to the cloud and web-servers exchanging high volumes of dynam-
ically generated content. While today’s ICN networks can deal
efficiently with static data delivery, they have difficulty handling
service/function invocation [24]. In view of these limitations, mul-
tiple works have recently tried to extend ICN’s capabilities to deal
with dynamic content.

Notable among these efforts, Named Function Networking (NFN)
[29] and Named Function as a Service (NFaaS) [17] extend ICN’s
named data access model to a remote function invocation capability,
enabling consumers to request the network to execute functions
remotely. In NFN [29], for instance, function invocation corresponds

Next steps

e prototype implementation (Charles is working on this!)
* end-to-end evaluation on simple case study
e package up as a Python library or similar

. O B https://github.com/Coffee-Powered/NDN/blob/main/prog_5/src/remote.cpp

Name name = interest.getName();
string content;

// Extract the proc name from name.
string proc

name.get(1).toUri();
cout << "Received request to call: " << proc << endl;

if(strcmp(proc.c_str(), "HelloWorld") == 0) {
cout << "Calling " << proc << ".." << endl;
hello _world();
content = string("Procedure called.");

Next steps

e prototype implementation (Charles is working on this!)
* end-to-end evaluation on simple case study
e package up as a Python library or similar

	Slide 1: Call me from Anywhere Remote Procedure Calling meets Named Data Networking
	Slide 2: what is a remote procedure call?
	Slide 3: Java RMI example
	Slide 4: RESTful web service example
	Slide 5: Summary of state-of-the-art RPC
	Slide 6: What is NDN?
	Slide 7: alternative definition
	Slide 8: How can we layer RPC over NDN?
	Slide 9: In Python?
	Slide 10
	Slide 11: invoking arbitrary remote code
	Slide 12: possible mitigations …
	Slide 13
	Slide 14: Next steps
	Slide 15
	Slide 16: Next steps

