

Should the Internet Adopt Named Data and Services?

Colin Perkins

Outline

- What are some trends pushing the network to evolve?
- What should an internet provide?
- How should the Internet evolve?

Trends

- Politics
 - Government pressure to compromise privacy and security
 - Business and control possibilities of splintering the network

- Changes in application demand
 - Increased demand for content and services, APIs
 - Video and real-time multimedia
 - Capacity challenges video, software updates

- Changes in technology
 - Software defined networking
 - Increasing use of virtualisation
 - Increasingly programmable infrastructure

- Increased demand for content and services, APIs
- Video and real-time multimedia
- Capacity challenges video, software updates

- Software defined networking
- Increasing use of virtualisation
- Increasingly programmable infrastructure

- Network architecture doesn't match the way it's used we use a host-centric network to support content-centric applications and services
- Technology changes give more programmability and flexibility than the protocols can support – how to evolve to a network that can use such features?

What should an internet provide?

The Internet Way of Networking

- The Internet Society tried to define the critical properties of the Internet*
 - An Accessible Infrastructure with a Common Protocol
 - An Open Architecture of Interoperable and Reusable Building Blocks
 - Decentralised Management and a Single Distributed Routing System
 - Common Global Identifiers
 - A Technology Neutral, General-Purpose Network

9

^{*} https://www.internetsociety.org/resources/doc/2020/internet-impact-assessment-toolkit/critical-properties-of-the-internet/

The Internet Way of Networking

- I would add:
 - The network should be secure
 - It should be private by design, and avoid tracking users

Evaluating the Internet

- Does the Internet meet these goals?
- Yes, largely although there are challenges
 - The Internet governance model is broadly open and accessible
 - There is an interoperable set of protocols and commonly used building blocks
 - IP, TCP, QUIC, TLS, BGP, HTTP, DNS, ...
 - Although routing, addressing, and naming systems have never been entirely global
 - Security and privacy remain a work in progress
 - The system embodies a particular worldview, that is not universally accepted

Evolving the Internet

 Could another design meet the same criteria, but better support emerging applications and technologies?

Named Data, Named Services

- We care about providing content and services
 - Ideally with low latency to support real-time
- We don't care where that content or those services are located
 - Provided they can be accessed securely
 - Provided we can be confident the data is not tampered with
- The Internet is architected around named devices, but it could focus on named data and named services

Named Data, Named Services

- Does this mean we change the Internet addressing and routing model?
- Maybe or perhaps we change the internetworking point and content routing approach to simplify the network?

Named Data, Named Services

- What we want might be an evolution of HTTP, rather than a new IP
 - Host name → authority/trusted source for data or services
 - Don't name the host where the data is to be found, name the data or service and the source of trust that data
 - Don't secure the connection, secure the data/service
 - Send IP packet → express interest in named data/service
 - Route request towards named data or service, rather than a named host
 - A name more clearly exposes intent than does an IP address
 - Pervasive caching pulls data and services towards consumers

Why Evolve HTTP Rather Than IP?

Because changing the lower layers is not feasible

What does internetworking look like in future?
 home → edge → hypergiant

The Death of Transit and the Future Internet

Geoff Huston

Chief Scientist, APNIC

What does internetworking look like in future?
 home → edge → hypergiant

- The home runs IP (too ossified to change)
 - IP is a useful link layer: 192.168.0.0/16 with headers rewritten at every domain boundary

What does internetworking look like in future?
 home → edge → hypergiant

- The home runs IP (too ossified to change)
 - IP is a useful link layer: 192.168.0.0/16 with headers rewritten at every domain boundary
 - But IPv6 will solve this!

Internet Engineering Task Force (IETF)
Request for Comments: 6296
Category: Experimental
ISSN: 2070-1721

M. Wasserman
Painless Security
F. Baker
Cisco Systems
June 2011

IPv6-to-IPv6 Network Prefix Translation

Abstract

This document describes a stateless, transport-agnostic IPv6-to-IPv6 Network Prefix Translation (NPTv6) function that provides the address-independence benefit associated with IPv4-to-IPv4 NAT (NAPT44) and provides a 1:1 relationship between addresses in the "inside" and "outside" prefixes, preserving end-to-end reachability at the network layer.

What does internetworking look like in future?
 home → edge → hypergiant

- The home runs IP (too ossified to change)
- The edge runs IP to talk to the home, and to the long tail

- What does internetworking look like in future?
 home → edge → hypergiant
- The home runs IP (too ossified to change)
- The edge runs IP to talk to the home, and to the long tail
- The hypergiants do whatever they choose internally, but expose it via the latest HTTP variant over IP – because HTTP is the only protocol that can change

Internetworking Futures?

Application

Presentation

Session

Transport

Network

Link

Physical

Application

Presentation

Named Data and Services

Network

Link

Physical

Is this still the Internet way?

- Critical features
 - An Accessible Infrastructure with a Common Protocol yes!
 - An Open Architecture of Interoperable and Reusable Building Blocks yes!
 - Decentralised Management and a Single Distributed Routing System yes, although the details need to be defined
 - Common Global Identifiers yes, although the details need to be defined
 - A Technology Neutral, General-Purpose Network yes!
 - The network should be secure yes!
 - It should be private by design, and avoid tracking users to be defined

Challenges

Challenges

- Applications request named data and invoke named services via HTTP today
 - The IP layer isn't important to applications or service providers
 - The de-emphasis has already happened
- Research challenges:
 - How to transition to, and scale, name-based routing rather than name-to-address mapping at the content distribution layer?
 - How to use the increasingly programmable infrastructure to support this?
 - What structure is required in names?
 - What is the trust model for named data and services?
 - How to avoid user tracking based on named data requests?

What Don't we Need?

- Limited domains
 - The concept of internetworking is correct we need common protocols
 - We just need to refine the Internetworking point, accept that it is moving up the stack
- Congestion control, quality of service, enhanced packet switching
 - If you have capacity, these are irrelevant and the infrastructure only serves to help track users;
 if you don't have capacity, your users will get fed-up and leave anyway
 - Application-agnostic mechanisms like L4S are important; service scheduling matters
- Blockchain
 - Just no.

Conclusion

- The Internet already uses named data and services it just doesn't admit it
- The capacity and flexibility of the increasingly programmable infrastructure could permit a transition to name-based routing supporting pervasive caching of data and services – saving complexity by aligning the network with its uses
- Interesting challenge to secure the expected simplifications while maintaining privacy