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Our Systems - Trends
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Our Systems
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ML and Systems
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ML and Systems
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A Few Opportunities...

« Key areas (we have been working on):

« ML systems that work in resource
constrained environments

* ML systems that respond to changing
operational requirements

« ML systems that are performance efficient
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Edge ML - Technigues
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Offloading In ML
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Offloading in Federated Learning
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Offloading in Federated Learning
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FedAdapt

A Few Experimental Results '

m Used the VGG-5 and VGG-8 DNN model for Federated Learning
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A Few Experimental Results

m The use of reinforcement learning for varying network

connections; each vertical line is when the network connection
drops to 10Mbps.
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Migration in Federated Learning

m For mobile devices how do we
resume training without loosing
data from prior training?

amazon
webservices™

1 - Building resilience into the
training process

R. Ullah et al. “FedF.\y:
Towards Migratign in
Edge-based Distnpute?’d
Federated Learning,
|EEE Communications
Magazine, 2022.
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Conclusions

« Many opportunities for systems research in edge machine
learning

« Computational and communication related bottlenecks need to
be addressed

* What must we do to bring training times down to sub-second
without compromising accuracy?
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